Конспект

Конспект "Чертежи геометрических тел. Анализ геометрической формы предмета"

Анализ задания: деталь имеет две плоскости симметрии – фронтальную и профильную, соответственно, изображение на горизонтальной плоскости проекций имеет две оси симметрии – вертикальную и горизонтальную, а на фронтальной и профильной – одну, вертикально расположенную. С проведения осей симметрии начинаем построения изображений. Размещаем их на поле чертежа с учетом габаритных размеров детали L xB xH – 100х80х75 мм.

Деталь пустотелая, т.е. внутри выполнено сквозное отверстие сложной геометрической формы, фронтальная проекция изображена линиями невидимого контура.

Внешняя форма . Деталь представляет собой основание в виде прямоугольной призмы с размерами 100х80х15мм. По всем четырем углам призмы выполнены срезы, так называемые фаски, размером 10х10мм. Посредине призматического основания расположена шестигранная прямая призма, высотой (75-15мм). На горизонтальной проекции основание призмы – шестиугольник, вписанный в окружность диаметром 70мм. Сверху в призме расположена выемка - сквозной призматической формы паз – на глубину 20мм и шириной 26мм. Посредине призматического основании слева и справа к боковым граням призмы на всю их высоту примыкают два ребра жесткости толщиной 10мм.

Внутренняя форма детали. Сверху - вниз в детали выполнено сквозное цилиндрическое отверстие (диаметр 48мм). На расстоянии 35мм от верхнего основания детали справа и слева к боковой поверхности цилиндрического отверстия примыкают симметрично расположенные призматической формы выступы, расстояние между которыми 32мм.

1.2 Особенности геометрической формы детали

Правая и левая грани (плоскости) призматического паза пересекаются с боковыми гранями шестигранной призмы по горизонтально проецирующим прямым. Отмечаем их горизонтальную проекцию, измеряем глубину и строим профильную проекцию паза. Нижняя плоскость паза пересекает грани шестигранника по прямым, параллельным сторонам основания призмы. Правая и левая грани (плоскости) призматического паза пересекаются с боковой поверхностью внутреннего цилиндрического отверстия по прямым образующим. Их профильную проекцию строим, измеряя глубину отрезка прямой образующей.

Верхняя грань внутреннего призматического выступа пересекает боковую поверхность цилиндрического отверстия по окружности, а параллельные между собой левая и правая грани, расположенные параллельно оси вращения цилиндрической поверхности, пересекают её по прямым образующим (горизонтально проецирующим прямым). Фронтальные и профильные проекций этих линий строим с учетом проекционной связи.

2 Изображения детали

2.1 Основные положения стандартов, используемых при выполнении задания

Согласно ГОСТ 2.102-68 «Виды изделий и комплектность конструкторских документов», теоретический чертеж – это документ, который определяет геометрическую форму (контуры, обводы) изделия и координаты расположения основных составных частей. Код документа – ТЧ.

Геометрическая форма заданной детали представляет собой сочетание, определенное расположение простых геометрических тел (поверхностей) или их элементов и подразделяется на внешнюю и внутреннюю. Внешнюю форму детали изображаем с помощью видов, а внутреннюю – с помощью двух вертикальных (фронтального и профильного) разрезов. Все изображения детали выполняем по методу прямоугольного проецирования на три взаимно перпендикулярные плоскости проекций – строим три ортогональные прямоугольные проекции (три основных вида).

ГОСТ 2.305-2008 «Изображения – виды, разрезы, сечения» дает следующие их определения:

Вид предмета (вид): Ортогональная проекция обращенной к наблюдателю видимой части поверхности предмета, расположенного между ним и плоскостью проецирования.

Вертикальный разрез: Разрез, выполненный плоскостями, перпендикулярными к горизонтальной плоскости проекций. На разрезе показываем то, что получается в секущей плоскости (заштриховываем) и что расположено за ней (не штрихуем).

Фронтальный (профильный) разрез: Вертикальный разрез, выполненный секущими плоскостями, параллельными фронтальной (профильной) плоскости проекций.

Разрезы располагаем на месте соответствующих основных видов. Так как секущие плоскости совпадают с плоскостями симметрии детали в целом, положения секущих плоскостей не отмечаем и разрезы надписями не сопровождаем.

Если вид или разрез представляет собой симметричную фигуру, допускается вычерчивать половину изображения. В таком случае разделяющей линией служит ось симметрии. Допускается вычерчивать немного более половины изображения вида или разреза с проведением в таком случае линии обрыва – волнистой линии.

      Особенности выполнения изображений разрезов детали

Для построения фронтального и профильного разрезов используем секущие плоскости, параллельные соответствующим плоскостям проекций. Так, как оба изображения разрезов имеют вертикально расположенные оси симметрии, то используем положение ГОСТ 2.305-2008, позволяющее в этом случае сохранить ½ вида (слева от оси симметрии) и выполнить только ½ разреза (справа от оси симметрии). При этом границей между половиной вида и половиной разреза является штрих-пунктирная линия. Отмечаем, что на фронтальной проекции на изображении половины разреза проекция ребра шестигранной призмы – контурная линия – совпадает с линией границы. В этом случае в соответствии с положениями стандарта контурную линию проводим на месте штрих-пунктирной, а границу между большей частью разреза и меньшей частью вида изображаем волнистой линией. Волнистую линию допускается провести либо в ограниченном месте, заводя её чуть дальше контурной, либо вдоль всей оси симметрии.

При выполнении фронтального разреза учитываем указание ГОСТ 2.305-2008, что ребра жесткости, как и некоторые другие элементы деталей, показывают условно не рассеченными, т.е. штриховку не наносят.

      Особенности при нанесении размеров детали

Для нанесения размеров детали используем все изображения. В первую очередь проставляем габаритные со стороны изображений видов детали. Размеры, относящиеся к изображениям внешней формы детали, проставляем со стороны изображения видов (слева от оси симметрии). Размеры внутренней формы детали проставляем со стороны изображения разрезов (справа от оси симметрии). Размеры, относящиеся к одному и тому же элементу детали, по возможности, проставляем рядом (близко друг к другу). Размеры фасок, выполненных по углам прямоугольной призмы, проставляем как показано в ГОСТ 2.307-68.

      Особенности при построении наглядного изображения детали (изометрической проекции)

Аксонометрический чертеж образуется параллельным проецированием объекта вместе с привязанной к нему натуральной системой координат на одну плоскость проекций. Такие чертежи замечательны своей наглядностью.

В отличие от проекционных чертежей в вырезе аксонометрической проекции ребра жесткости, наклонные стенки, спицы маховиков и шкивов, оси, шарики и другие подобные элементы штрихуют.

При нанесении размеров выносные линии проводят параллельно аксонометрическим осям, а размерные линии - параллельно измеряемому отрезку.

Тема урока: Анализ геометрической формы предмета.

Цели урока:

  • Освоить практические навыки анализа геометрических форм предметов на основе их характерных признаков.
  • Научить выделять простейшие геометрические тела в реальных деталях.

Задачи урока:

  • Образовательные
    • приступить к формированию новых понятий геометрическое тело, анализ геометрической формы;
    • продолжить формировать у учащихся умение выполнять чертежи деталей.
  • Воспитательные
    • воспитывать потребность трудиться и добиваться наилучших результатов в учебе.
  • Развивающие
    • продолжить формирование приемов логического мышления (сравнение, анализ, синтез).

Оборудование:

  • для учителя – объемные деревянные модели геометрических тел: куб, призма, пирамида, шар, цилиндр, конус; таблица с наглядным изображением детали «опора». Фотография Невьянской башни.
  • для учащихся – раздаточный материал в виде карточек-заданий, содержащих наглядные изображения геометрических тел; деталей, состоящих из геометрических тел.

Структура урока:

  1. Организационная часть урока 1–2 мин.
  2. Актуализация знаний 3–5 мин.
  3. Изучение нового материала 10 мин.
  4. Чтение чертежей (устная работа) 5 мин.
  5. Индивидуальная графическая работа 10 мин.
  6. Обобщение изученного 5 мин.
  7. Домашнее задание 3 мин.

ХОД УРОКА

Объявить тему, цели урока.

– Хочу начать урок с информации, которая на первый взгляд, не имеет отношения к черчению. Чтобы церкви не терялись в пространстве и были отчетливо видны издалека, для них нужно было отыскать выразительный силуэт. Поиски его привели зодчих к композиционному решению храмов с ярусным верхом из ряда уменьшающихся восьмериков.
Прототипом старинных колоколен была сторожевая военно-оборонительная башня, которая строилась по традиционной схеме – восьмерик на четверике.
Ведущую роль в архитектурном облике уральского города Невьянска, расположенного в нашей области, играет знаменитая «падающая» башня <Приложение 1 >. Она была построена в 1725 году, ее видно с любой улицы города. Считают, что первоначально она была дозорной вышкой. Высота башни 57,5 метра. Башня состоит из четырех частей: «четверик», который занимает половину высоты. На четверике, один на другом, стоят три «восьмерика». Венчает башню «шатер». Говоря языком черчения, башня представляет собой сочетание геометрических тел. А вот каких – мы должны выяснить к концу урока.
(Записать тему урока в тетрадь)

Геометрическое тело – это замкнутая часть пространства, ограниченная плоскими и кривыми поверхностями.

Форма каждого тела имеет свои характерные признаки.
На партах у вас лежат карточки с описанием этих геометрических тел. Давайте познакомимся с ними поближе. <Приложение 2 >

(Учитель показывает макет геометрического тела, один из учащихся зачитывает определение и существенные признаки тела из карточки)

  • Упр. 4 из рабочей тетради <Приложение 3 >. Используя данные геометрические тела, напиши и нарисуй предметы быта, которые имеют форму указанных геометрических тел и их сочетаний.

В технике часто сравнивают форму детали с более простыми формами – геометрическими телами, а также используют формы геометрических тел для описания формы более сложных деталей.
Любая простая форма технической детали может быть представлена как форма геометрического тела (например, форма технической детали «ось» может быть представлена как форма цилиндра – см. рисунок 73 в учебнике), а форма сложного изделия – как сочетание форм геометрических тел (например, деталь «вилка» – см. рис.73 в учебнике, …, башня, о которой мы говорили в начале урока). В основу рассмотренного подхода к изучению деталей положен анализ его геометрической формы.

Анализ геометрической формы предмета – это мысленное рассечение предмета на составляющие его геометрические тела. (Записать в тетради)

Рассмотрим, как осуществляется анализ геометрической формы предмета по наглядному изображению детали. Деталь мысленно расчленяем на простые геометрические тела, называем их и рассказываем, как они расположены относительно друг друга в пространстве.
Например, деталь «Опора» (плакат на доске) состоит из прямоугольного параллелепипеда (1) с пятью сквозными цилиндрическими отверстиями. В центре верхней грани прямоугольного параллелепипеда расположена четырёхугольная призма (2) со сквозным цилиндрическим отверстием, ось и диаметр которого совпадают с осью и диаметром отверстия детали (1). Параллелепипеды соединены между собой двумя ребрами жесткости (3), имеющими форму треугольных призм, что обеспечивает устойчивое их крепление.

Применяя способ расчленения детали на простые геометрические тела, можно научиться быстро, правильно читать чертежи и грамотно их выполнять.

Задание: по наглядному изображению детали проанализируйте ее форму (наглядное изображение детали – плакат на доске) .

Ответ: в основании детали лежит прямоугольный параллелепипед со сквозным цилиндрическим отверстием в центре. С торцов к нему примыкают еще два прямоугольных параллелепипеда. Один имеет сквозное цилиндрическое отверстие, другой – прямоугольный вырез.

  • Упр. 6 из рабочей тетради <Приложение 4 >. Мысленно расчленить данные предметы на геометрические тела и записать их названия.

Названия элементов геометрических тел. Основание, грани, ребра, вершина, образующая (учитель показывает на макетах геометрических тел, см. рисунок в учебнике).

  • Упр. 7 из рабочей тетради <Приложение 5 >. Перечислить и записать названия геометрических тел, составляющих форму детали.

– А теперь давайте вернемся к началу урока. Как отмечают исследовали, Невьянская башня «родственна ярусным башням и колокольням Древней Руси, но отличается подчеркнутой суровостью». Я напомню вам о ней (зачитать информацию с доски) . <Приложение 6 >

– Познакомимся с определениями «четверик», «восьмерик», «шатёр» – я давала задание нескольким ребятам, найти значения этих слов в словарях. (зачитать, вывесить на доску)
Так как же сейчас, познакомившись с геометрическими телами, можно сделать анализ геометрической формы Невьянской башни?

Ответ: башня состоит из четырех частей – правильной четырехугольной призмы и трех восьмиугольных призм, стоящих одна на другой. Венчает башню восьмигранная пирамида.

– С какими еще геометрическими телами вы сегодня познакомились? (Шар, куб, конус, цилиндр)

– Для чего нужен анализ геометрической формы предмета? (Чтобы быстро и правильно читать и выполнять).

Домашнее задание: в учебнике §10, стр. 58 – 61. Придумать и выполнить наглядное изображение игрушки, форма которой состоит из простых геометрических тел (образец показать). Если трудно выполнить рисунок, можно вылепить игрушку из пластилина.

Литература :

  1. Учебник для 7-8 классов общеобразовательных учреждений «Черчение», авторы: А.Д.Ботвинников, В.Н.Виноградов, И.С. Вышнепольский.
  2. Рабочая тетрадь №3 по черчению для 7 класса, авторы: Н.Г.Преображенская, Т.В.Кучукова, И.А.Беляева.

Анализ геометрической формы предметов. Тела вращения. Группа геометрических тел

Оборудование для ученика:

Принадлежности, учебник «Черчение» под ред. А. Д. Ботвинникова §10, 11, 16, цветные карандаши.

    Правила выполнения чертежей геометрических тел.

    Последовательность чтения группы геометрических тел.

Закрепление материала

Работа по карточкам

Закрепление материала

Используя цветные карандаши, выполните задание по карточке.

Анализом геометрической формы-

Чертеж детали по двум данным видам

Оборудование для ученика:

инструменты,

ф А4, инструменты

Анализировать чертежи, давать точную словесную характеристику изображенного на чертеже предмета.

Получение аксонометрических проекций плоских фигур

Домашнее задание:

Повторить п. 7-7.2; завершить построение таблицы 1.

Оборудование для учеников:

учебник «Черчение» под ред. Ботвинникова А. Д., рабочая тетрадь, чертежные принадлежности.

Квадрат в диметрической проекции

Задание:

Построить квадрат в изометрической проекции

Треугольник в диметрии Треугольник в изометрии

Шестиугольник в диметрии и в изометрии

Задание:

Построить шестиугольник в изометрической проекции

Задание:

Аксонометрические проекции объемных тел

Оборудование для ученика:

Учебник «Черчение» под ред. А. Д. Ботвинникова, тетрадь, инструменты.

Принадлежности, учебник «Черчение» под ред. А. Д. Ботвинникова стр. 49 таблица №2, §7-8.

Правила построения аксонометрических проекций. Способы построения объемной детали в изометрии.

Строить изображения в аксонометрии начиная с плоских фигур, лежащих в основании детали. Учить анализировать полученные изображения.

Задание на повторение:

Построить на горизонтальной плоскости проекции геометрическую фигуру.

Сумма (наращивание)

Отсечение

Задание на закрепление

Аксонометрическая проекция детали с цилиндрическими элементами

Оборудование для ученика:

Учебник «Черчение» под ред. А. Д. Ботвинникова, принадлежности, тетрадь.

Принадлежности, учебник «Черчение» под ред. А. Д. Ботвинникова § 7-8.

Правила построения детали с кривой поверхностью. Общее понятие «аксонометрия детали».

Анализировать форму детали, полученное изображение.

Эллипс –

Овал -


Алгоритм построения овала

1. Построим изометрическую проекцию квадрата – ромб ABCD

2. Обозначим точки пересечения окружности с квадратом 1 2 3 4

3. Из вершины ромба (D ) проводим прямую до точки 4 (3). Получим отрезок D 4, который будет равен радиусу дуги R .

4. Проведем дугу, которая соединит точки 3 и 4 .

5. При пересечении отрезка В2 и АС получим точку О1.

При пересечении отрезка D 4 и АС получим точку О2.

6. Из полученных центров О1 и О2 проведем дуги R 1 , которые соединят точки 2 и 3, 4 и 1.

Закрепление нового материала

! работа в рабочей тетради

Выполнить изометрические проекции окружности параллельные фронтальной и профильной плоскостей проекции.

Чертеж и наглядное изображение детали

Оборудование для ученика:

Ф А4, инструменты, учебник

§12, калька

Анализировать форму детали, построить 3 вида детали и нанести размеры.

Технический рисунок

Оборудование для ученика:

Учебник «Черчение» под ред. А. Д. Ботвинникова§9 , принадлежности, тетрадь.

Принадлежности, учебник «Черчение» под ред. А. Д. Ботвинникова § 9

Правила выполнения технического рисунка и приемы выполнения детали.

Выполнять аксонометрические проекции с изображением плоских фигур. Выполнять технический рисунок.

Технический рисунок

Способы штриховки:

Закрепление материала

Выполните технический рисунок детали, два вида которой даны на рис. 62

Проекции вершин, ребер и граней предмета

Оборудование для ученика:

Учебник «Черчение» под ред. А. Д. Ботвинникова, принадлежности, тетрадь, цветные карандаши.

Принадлежности, учебник «Черчение» под ред. А. Д. Ботвинникова §12, фА4, цветные карандаши.

Способы выделения точки на плоскости. Принципы построения ребер и граней.

Строить проекции точки и грани.

? Проблема

Что такое ребро?

Что называется вершиной предмета?

Что такое грань предмета?

Проекция точки

Практическая работа:

Расставьте буквенные обозначения проекций

точек на чертеже детали, отмеченных на наглядном изображении.

Графическая работа №9

Эскиз детали и технический рисунок

Оборудование для ученика:

Инструменты, миллиметровка, фА4, § 18

Что такое эскиз. Правила выполнения эскиза

Выполнить эскиз в необходимом количестве видов. По эскизу выполнить чертеж.

    Что называется эскизом ?

Закрепление материала

Задания для упражнений

Нанесение размеров с учетом формы предмета

Оборудование для ученика:

инструменты, учебник, тетрадь, калька.

Рис. 113 (1, 2, 3, 5, 8, 9)

Общее правило нанесения размеров на чертеже.

Повторение и закрепление пройденного материала.

Устное упражнение


Практическая работа:

Вырезы и срезы на геометрических телах

Элементы деталей

    ШЛИЦ – паз в виде прорези или канавки на деталях машин. Например, прорезь в головке винта или шурупа, в которую вставляется конец отвертки при их завинчивании.

    ПАЗ – продолговатое углубление или отверстие на поверхности детали, ограниченное с боков параллельными плоскостями.

    ЛЫСКА – плоский срез с одной или с двух сторон цилиндрических, конических или сферических участков детали. Лыски предназначены для захвата гаечным ключом и др.

    ПРОТОЧКА - это кольцевая канавка на стержне, технологически необходимая для выхода резьбонарезанного инструмента при изготовлении детали или других целей.

    ПАЗ ШПОНОЧНЫЙ – прорезь в виде канавки, служащая для установки шпонки, которая передает вращение от вала к втулке и наоборот.

    ОТВЕРСТИЕ ЦЕНТРОВОЕ – элемент детали, служащий для уменьшения ее массы, подачи смазки к трущимся поверхностям, соединения деталей и др. Отверстия могут быть сквозными и глухими.

    ФАСКА – обточка на усеченный конус цилиндрической кромки детали.

Задание: Вместо цифр напишите названия элементов детали

Задание: Выполнить аксонометрическую проекцию детали

Практическая работа №7

«Чтение чертежей»

Оборудование для ученика:

Учебник, тетрадь, лист.

Миллиметровка, §17

Усвоить способы построения 3-х видов, анализ геометрической формы предмета, знать названия элементов детали.

Анализировать чертеж, определять размеры, давать точную словесную характеристику

Графический диктант

«Чертеж и технический рисунок детали по словесному описанию»

Оборудование для ученика:

Формат (тетрадь), инструменты

Инструменты, миллиметровка.

Правила выполнения эскизов

Определять необходимое и достаточное количество видов для данной детали. Выбирать главный вид. Проставлять размеры.

Вариант №1

Корпус представляет собой сочетание двух параллелепипедов, из которых меньший поставлен большим основанием в центре верхнего основания другого параллелепипеда. Через центры параллелепипедов вертикально проходит сквозное ступенчатое отверстие.

Общая высота детали 30 мм.

Высота нижнего параллелепипеда 10 мм, длина 70 мм, ширина 50 мм.

Второй параллелепипед имеет длину 50 мм, ширину 40 мм.

Диаметр нижней ступени отверстия 35 мм, высота 10 мм; диаметр второй ступени 20 мм.

Примечание:

Вариант № 2

Опора представляет собой прямоугольный параллелепипед, к левой (наименьшей) грани которого присоединен полуцилиндр, имеющий с параллелепипедом общее нижнее основание. По центру верхней (наибольшей) грани параллелепипеда, вдоль ее длинной стороны, проходит паз призматической формы. В основании детали находится сквозное отверстие призматической формы. Его ось совпадает на виде сверху с осью паза.

Высота параллелепипеда 30 мм, длина 65 мм, ширина 40 мм.

Высота полуцилиндра 15 мм, основание R 20 мм.

Ширина паза призматической формы 20 мм, глубина 15 мм.

Ширина отверстия 10 мм, длина 60 мм. Находится отверстие на расстоянии 15 мм от правой грани опоры.

Примечание: при нанесении размеров деталь рассматривать цельной.

Вариант № 3

Корпус представляет собой сочетание квадратной призмы и усеченного конуса, который стоит большим основанием в центре верхнего основания призмы. Вдоль оси конуса проходит сквозное ступенчатое отверстие.

Общая высота детали 65 мм.

Высота призмы 15 мм, размер сторон основания 70x70 мм.

Высота конуса 50 мм, нижнее основание Ǿ 50 мм, верхнее - Ǿ 30 мм.

Диаметр нижней части отверстия 25 мм, высота 40 мм.

Диаметр верхней части отверстия 15 мм.

Примечание: при нанесении размеров деталь рассматривать цельной.

Вариант № 4

Втулка представляет собой сочетание двух цилиндров со ступенчатым сквозным отверстием, которое проходит вдоль оси детали.

Общая высота детали 60 мм.

Высота нижнего цилиндра 15 мм, основание Ǿ 70 мм.

Основание второго цилиндра Ǿ 45 мм.

Отверстие снизу Ǿ 50 мм, высота 8 мм.

Верхняя часть отверстия Ǿ 30 мм.

Примечание: при нанесении размеров деталь рассматривать цельной.

Вариант № 5

Основание представляет собой параллелепипед. По центру верхней (наибольшей) грани параллелепипеда, вдоль ее длинной стороны, проходит паз призматической формы. В пазу имеются два сквозных цилиндрических отверстия. Центры отверстий отстоят от торцов детали на расстоянии 25 мм.

Высота параллелепипеда 30 мм, длина 100 мм, ширина 50 мм.

Глубина паза 15 мм, ширина 30 мм.

Диаметры отверстий 20 мм.

Примечание: при нанесении размеров деталь рассматривать цельной.

Вариант № 6

Корпус представляет собой куб, вдоль вертикальной оси которого проходит сквозное отверстие: сверху полуконическое, а затем переходящее в ступенчатое цилиндрическое.

Ребро куба 60 мм.

Глубина отверстия полуконической формы 35 мм, верхнее основание Ǿ 40 мм, нижнее - Ǿ 20 мм.

Высота нижней ступени отверстия 20 мм, основание Ǿ 50 мм. Диаметр средней части отверстия 20 мм.

Примечание: при нанесении размеров деталь рассматривать цельной.

Вариант №7

Опора представляет собой сочетание параллелепипеда и усеченного конуса. Конус большим основанием поставлен в центре верхнего основания параллелепипеда. По центру меньших боковых граней параллелепипеда проходят два выреза призматической формы. Вдоль оси конуса просверлено сквозное отверстие цилиндрической формы Ǿ 15 мм.

Общая высота детали 60 мм.

Высота параллелепипеда 15 мм, длина 90 мм, ширина 55 мм.

Диаметры оснований конуса 40 мм (нижнее) и 30 мм (верхнее).

Длина выреза призматической формы 20 мм, ширина 10 мм.

Примечание: при нанесении размеров деталь рассматривать цельной.

Вариант № 8

Корпус представляет собой полый прямоугольный параллелепипед. В центре верхнего и нижнего основания корпуса имеются два прилива конической формы. Через центры приливов проходит сквозное отверстие цилиндрической формы Ǿ 10 мм.

Общая высота детали 59 мм.

Высота параллелепипеда 45 мм, длина 90 мм, ширина 40 мм. Толщина стенок параллелепипеда 10 мм.

Высота конусов по 7 мм, основания Ǿ 30 мм и Ǿ 20 мм.

Примечание: при нанесении размеров деталь рассматривать цельной.

Вариант № 9

Опора представляет собой сочетание двух цилиндров с одной общей осью. Вдоль оси проходит сквозное отверстие: сверху призматической формы с квадратным основанием, а затем цилиндрической формы.

Общая высота детали 50 мм.

Высота нижнего цилиндра 10 мм, основание Ǿ 70 мм. Диаметр основания второго цилиндра 30 мм.

Высота цилиндрического отверстия 25 мм, основание Ǿ 24 мм.

Сторона основания призматического отверстия 10 мм.

Примечание: при нанесении размеров деталь рассматривать цельной.

Контрольная работа

Графическая работа №11

«Чертеж и наглядное изображение детали»

По аксонометрической проекции постройте чертеж детали в необходимом количестве видов в масштабе 1:1. Нанесите размеры.

Графическая работа №10

«Эскиз детали с элементами конструирования»

Оборудование для ученика:

инструменты, учебник, миллиметровка

Инструменты, миллиметровка.

Правила выполнения эскиза

Выполнить эскиз, правильно проставлять размеры

Выполните чертеж детали, у которой удалены части по нанесенной разметке. Направление проецирования для построения главного вида указано стрелкой.

Графическая работа №8

«Чертеж детали c преобразованием ее формы»

Оборудование для ученика:

инструменты, фА4, учебник

Инструменты, миллиметровка.

Выполнить чертеж

Общее понятие на преобразование формы. Связь чертежа с разметкой

Оборудование для ученика:

Учебник, тетрадь, миллиметровка, принадлежности

Учебник рис. 151 (познакомиться), фА4

Анализировать форму. Выполнить чертеж в ортогональном прямоугольном проецировании.

Графическая работа

Выполнение чертежа предмета в трех видах с преобразованием его формы (путем удаления части предмета)

Выполните технический рисунок детали, сделав вместо выступов, отмеченных стрелками, выемки такой же формы и размеров на том же месте.

Задание на логическое мышление

Тема «Оформление чертежей»

Тема «Чертежные инструменты и принадлежности»

Кроссворд «Проецирование»

1.Точка, из которой исходят проецирующие лучи при центральном проецировании.

2. То, что получается в результате моделирования.

3. Грань куба.

4. Изображение, получаемое при проецировании.

5. В данной аксонометрической проекции оси располагаются под углом 120° друг к другу.

6. По–гречески это слово означает «двойное измерение».

7. Вид сбоку лица, предмета.

8. Кривая, изометрическая проекция окружности.

9. Изображение на профильной плоскости проекций – это вид…

Ребус по теме «Вид»

Ребус

Тема «Развертки геометрических тел»

Кроссворд «Аксонометрия»

По вертикали:

    В переводе с французского языка «вид спереди».

    Понятие в черчении на чем получается проекция точки или предмета.

    Граница между половинками симметричной детали на чертеже.

    Геометрическое тело.

    Чертежный инструмент.

    В переводе с латинского языка «бросать, отбрасывать вперед».

    Геометрическое тело.

    Наука о графических изображениях.

    Единица измерения.

    В переводе с греческого языка «двойное измерение».

    В переводе с французского языка «вид сбоку».

    На чертеже « она» бывает толстой, тонкой, волнистой и т. д.

    Рабочая программа

    От «____» _________ 2014 Рабочая программа по черчению 8,9 классы Модифицированная на основе программы... отдельных листах формата А4, упражнения в тетрадях .) 1. Эскиз детали с выполнением необходимого разреза...

На рисунке 72 вы видите изображения некоторых геометрических тел. Форма каждого из них имеет свои характерные признаки. По этим признакам мы отличаем цилиндр от конуса, а конус от пирамиды. С большинством этих тел вы знакомы. Мы говорим «куб», и каждый представляет себе его форму. Говорим «шар», и опять в нашем сознании возникает образ определенного геометрического тела.

Присмотритесь к окружающим нас предметам. Они имеют форму геометрических тел или представляют собой их сочетания.

Рис. 72. Геометрические тела

В основе формы деталей машин и механизмов также находятся геометрические тела. Взгляните на рисунок 73. Здесь изображены различные детали. Часть из них самой простой формы. Скажите, какую форму имеют ось и ролик. А какова форма прокладки?

Рис. 73. Различные детали имеют в своей основе геометрические тела

О таких деталях, как ось и ролик, мы скажем, что они цилиндрические, а о прокладке - что она призматическая.

Другие детали имеют более сложную форму. Они представляют собой совокупность геометрических тел. Например, валик (рис. 73) образуется в результате добавления к цилиндру другого цилиндра меньших размеров. А втулка представляет собой цилиндр, из которого удален другой цилиндр меньшего диаметра.

Труднее понять по чертежу форму более сложной детали, например вилки.

Как легче определить форму предмета по чертежу? Для этого сложную по форме деталь мысленно расчленяют на отдельные составляющие ее части, имеющие форму различных геометрических тел. Рассмотрим пример.

На рисунке 74, а дано изображение опоры. Какова ее форма? Она слагается из прямоугольного параллелепипеда, двух полуцилиндров и усеченного конуса. В детали имеется цилиндрическое отверстие (рис. 74. б). После такого «расчленения» форму детали определить легче.

Рис. 74. Анализ геометрической формы опоры

Мысленное расчленение предмета на составляющие его геометрические тела называют анализом геометрической формы.

  1. Какие геометрические тела вам известны?
  2. Назовите предметы, имеющие форму шара, цилиндра, конуса, призмы.
  3. Как называется процесс мысленного расчленения предмета на геометрические тела, образующие его поверхность?
  4. Для чего нужен анализ геометрической формы предмета?

Определите, поверхности каких геометрических тел образуют форму предметов, изображенных на рисунке 75.



Рис. 75. Задание для упражнений

§ 11. Чертежи и аксонометрические проекции геометрических тел

Итак, вы уже знаете, что форма большинства предметов представляет собой сочетание различных геометрических тел или их частей. Следовательно, для чтения и выполнения чертежей нужно знать, как изображаются геометрические тела.

11.1. Проецирование куба и прямоугольного параллелепипеда . Куб располагают так, чтобы его грани были параллельны плоскостям проекций. Тогда они изобразятся на параллельных им плоскостях проекций в натуральную величину - квадратами, а на перпендикулярных плоскостях отрезками прямых (рис. 76).

Рис. 76. Куб и параллелепипед: а - проецирование: б, г - чертежи в системе прямоугольных проекций: в, д - изометрические проекции

Проекциями куба являются три равных квадрата.

На чертеже куба и параллелепипеда указывают три размера: длину, высоту и ширину.

На рисунке 77 деталь образована двумя прямоугольными параллелепипедами, имеющими по две квадратные грани. Обратите внимание, как нанесены на чертеже размеры. Плоские поверхности отмечены тонкими пересекающимися линиями.

Рис. 77. Изображение детали в одном виде

Благодаря условному знаку форма детали ясна и по одному виду.

11.2. Проецирование правильных треугольной и шестиугольной призм . Основания призм, параллельные горизонтальной плоскости проекций, изображаются на ней в натуральную величину, а на фронтальной и профильной плоскостях -- отрезками прямых. Боковые грани изображаются без искажения на тех плоскостях проекций, которым они параллельны, и в виде отрезков прямых на тех, которым они перпендикулярны (рис. 78). Грани. наклоненные к плоскостям проекций, изображаются на них искаженными.

Рис 78. Призмы: а. г - проецирование; б, д - чертежи в системе прямоугольных проекции: в, с - изометрические проекции

Размеры призм определяются их высотой и размерами фигуры основания. Штрихпунктирнымн линиями на чертеже проведены оси симметрии.

Строить изометрические проекции призмы начинают с основания. Затем из каждой вершины основания проводят перпендикуляры, на которых откладывают отрезки, равные высоте, и через полученные точки проводят прямые, параллельные ребрам основания.

Чертеж в системе прямоугольных проекций также начинают выполнять с горизонтальной проекции.

11.3. Проецирование правильной четырехугольной пирамиды . Квадратное основание пирамиды проецируется на горизонтальную плоскость Н в натуральную величину. На нем диагоналями изображаются боковые ребра, идущие от вершин основания к вершине пирамиды (рис. 79).

Рис. 79. Пирамида: проецирование: б чертеж в системе прямоугольных проекций; в изометрический проекции

Фронтальная и профильная проекции пирамиды - равнобедренные треугольники.

Размеры пирамиды определяются длиной b двух сторон ее основания и высотой h.

Изометрическую проекцию пирамиды начинают строить с основания. Из центра полученной фигуры проводят перпендикуляр, откладывают на нем высоту пирамиды и соединяют полученную точку с вершинами основания.

11.4. Проецирование цилиндра и конуса . Если круги, лежащие и основаниях цилиндра и конуса, расположены параллельно горизонтальной плоскости H, их проекции на эту плоскость будут также кругами (рис. 80, б и д).

Рис. 80. Цилиндр и конус: а, г - проецирование; б, д чертежи в системе прямоугольных проекций; в. е - изометрические проекции

Фронтальная и профильная проекции цилиндра в этом случае прямоугольники, а конуса - равнобедренные треугольники.

Заметьте, что на всех проекциях следует наносить оси симметрии, с проведения которых и начинают выполнение чертежей цилиндра и конуса.

Фронтальная и профильная проекции цилиндра одинаковы. То же можно сказать о проекциях конуса. Поэтому в данном случае профильные проекции на чертеже лишние. Кроме того, благодаря значку "диаметр" можно представить форму цилиндра по одной проекции (рис. 81). Отсюда следует, что в подобных случаях нет необходимости в трех проекциях.

Рис. 81. Изображение цилиндра в одном виде

Размеры цилиндра и конуса определяются их высотой h и диаметром основания d. Способы построения изометрической проекции цилиндра и конуса одинаковы. Для этого проводят оси х и у, на которых строят ромб. Стороны его равны диаметру основания цилиндра или конуса. В ромб вписывают овал (см. рис. 66).

11.5. Проекции шара . Все проекции шара - круги, диаметр которых равен диаметру шара (рис. 82). На каждой проекции проводят центровые линии.

Рис. 82. Проекции шара

Благодаря знаку "диаметр" шар можно изображать в одной проекции. Но если по чертежу трудно отличить сферу от других поверхностей, добавляют слово «сфера», например: «Сфера диаметром 45».

11.6. Проекции группы геометрических тел . На рисунке 83 даны проекции группы геометрических тел. Можете ли вы сказать, сколько геометрических тел входит в эту группу? Какие это тела?

Рис. 83. Чертеж группы геометрических тел

Рассмотрев изображения, можно установить, что на нем даны конус, цилиндр и прямоугольный параллелепипед. Они различно расположены относительно плоскостей проекций и друг друга. Как именно?

Ось конуса перпендикулярна горизонтальной плоскости проекций, а ось цилиндра - профильной плоскости проекций. Две грани параллелепипеда параллельны горизонтальной плоскости проекций. На профильной проекции изображение цилиндра находится справа от изображения параллелепипеда, а на горизонтальной - ниже. Это значит, что цилиндр расположен впереди параллелепипеда, поэтому часть параллелепипеда на фронтальной проекции показана штриховой линией. По горизонтальной и профильной проекциям можно установить, что цилиндр касается параллелепипеда.

Фронтальная проекция конуса касается проекции параллелепипеда. Однако, судя по горизонтальной проекции, параллелепипед не касается конуса. Конус расположен левее цилиндра и параллелепипеда. На профильной проекции он частично их закрывает. Поэтому невидимые участки цилиндра и параллелепипеда показаны штриховыми линиями.

Как изменится профильная проекция на рисунке 83, если из группы геометрических тел удалить конус?

Занимательные задачи

  1. На столе лежат шашки, как показано на рисунке 84, а. Сосчитайте по чертежу, сколько шашек находится в первых ближних к вам столбиках. Сколько всего шашек лежит на столе? Если вы затрудняетесь сосчитать их по чертежу, попробуйте сначала сложить шашки в столбики, пользуясь чертежом. Теперь попробуйте правильно ответить на вопросы.

Рис. 84. Задания для упражнений

  1. На столе в четыре столбика расположены шашки. На чертеже они показаны двумя проекциями (рис. 84, б). Сколько шашек на столе, если черных и белых поровну? Для решения этой задачи нужно не только знать правила проецирования, но и уметь логически рассуждать.

§ 12. Проекции вершин, ребер и граней предмета

12.1. Как изображают элементы предметов . Любая точка или отрезок на изображении предмета является проекцией того или иного элемента: вершины, ребра, грани, кривой поверхности и т. п. (рис. 85). Поэтому изображение любого предмета сводится к изображению его вершины, ребер, граней и кривых поверхностей.

Рис. 85. Элементы поверхности предмета

Рассмотрим этот процесс на примере построения прямоугольных проекций предмета (рис. 86).

Расположим предмет в пространстве так, чтобы каждая из двух параллельных между собой граней была параллельна одной из плоскостей проекций. Тогда эти грани изобразятся на соответствующих плоскостях проекций без искажения.

Проведем через вершины предмета проецирующие лучи, перпендикулярные плоскостям проекций, и отметим точки пересечения их с плоскостями V, H и W.

Предмет так расположен относительно плоскостей проекций, что на одном проецирующем луче оказалось по две вершины, поэтому их проекции слились в одну точку. Так, вершины А и В лежат на одном луче, перпендикулярном горизонтальной плоскости проекций H. Их горизонтальные проекции а и b совпали. Вершины А и С лежат на одном луче, проецирующем эти точки на фронтальную плоскость проекций. Их фронтальные проекции а" и с" также совпали. На профильной плоскости проекций W в одну точку (b" и d") спроецпронались вершины В и D.

Из двух совпадающих на изображении точек одна является изображением видимой вершины, другая - закрытой (невидимой). На горизонтальмой проекции будет видима та вершина, которая расположена в пространстве выше. Так, вершина А видима, вершина В невидима. На фронтальной проекции видимой будет та вершина, которая находится ближе к нам. Отсюда а" изображение видимой вершины А, с" - изображение невидимой вершины С, она закрывается при проецировании вершиной А. На изображении обозначение проекций невидимых точек берут иногда в скобки.

Соединив попарно точки на фронтальной, горизонтальной и профильной проекциях, получим изображения ребер предмета. Например, ас - горизонтальная проекция ребра АС, а"b" фронтальная проекция ребра АB

Рис. 86. Изображения предмета

На рисунке 86 видно, что если ребро параллельно плоскости проекций, то оно на этой плоскости изображается без искажения, или, как говорят, в истинную (натуральную) величину. В этом случае проекция ребра и само ребро равны между собой. Например, проекция а"b" - истинная величина ребра АВ на фронтальной, а проекция а"b"- на профильной плоскости проекций.

Если ребро перпендикулярно плоскости проекций, оно проецируется на нее в точку. Так, на фронтальную плоскость проекций в точку спроецировалось ребро АС, на горизонтальную плоскость-ребро АВ, на профильную - ребро BD и т. д.

Построив проекции ребер, видим, что на изображении они ограничивают проекции граней. Как и ребро, грань, параллельная плоскости проекций, проецируется на нее без искажения. Например, на профильную плоскость проекций без искажения спроецировалась грань, в которой лежат точки А, В и С. На горизонтальную плоскость проекций спроецировались без искажения нижняя и верхняя грани и т. д. Найдите эти грани на чертеже предмета в системе прямоугольных проекций.

Если грань перпендикулярна плоскости проекций, она проецируется на нее в отрезок прямой.

Таким образом, каждый отрезок прямой на изображении - это проекция ребра или проекция плоскости, перпендикулярной плоскости проекций. Ребра и грани предмета, наклоненные к плоскости проекций, проецируются на нее с искажением. Найдите такие ребра и грань на рисунке 86.

Строя чертеж, надо четко представлять, как изобразится на нем каждая вершина, ребро и грань предмета. Читая чертеж, надо представить, изображение какой части предмета скрыто за каждой точкой, отрезком или фигурой.

Следует помнить, что каждый вид- это изображение всего предмета, а не одной его стороны. Разница заключается лишь в том, что одни грани спроецируются в истинную фигуру, другие- в отрезки прямых.

1. В каком случае на изображении проекции точек совпадают? Какая из двух точек, проекции которых на горизонтальной плоскости совпали, будет видимой?

2. В каком случае отрезок прямой (ребро) проецируется в истинную величину? в точку?

3. В каком случае грань (часть плоскости) проецируется в отрезок прямой? В каком случае она спроецируется в истинную величину?

Рис. 87. Задания для упражнений

1. На рисунке 87, а даны наглядное изображение и три проекции детали. На чертеже показаны проекции точки А, являющейся одной из вершин детали.

  1. Как называются заданные проекции детали?
  2. Перечертите в рабочую тетрадь или перенесите на кальку проекции детали. Нанесите на них проекции точек В и С.
  3. Выделите одним цветом на проекциях ребро ВС. Укажите, на какие плоскости проекций это ребро спроецировалось в истинную величину.
  4. Выделите (раскрасьте) одним цветом на всех проекциях ту грань детали, которая не параллельна ни одной из плоскостей проекций.

2. На рисунке 87, б дано изображение детали.

  1. Сосчитайте, сколько вершин имеет изображенный предмет. Если вы затрудняетесь сделать подсчет, обозначьте вершины буквами.
  2. Сосчитайте, сколько ребер и граней у предмета.
  3. Сколько у предмета ребер и граней, параллельных горизонтальной плоскости проекций? Покажите их на проекциях.
  4. Сколько ребер и граней, перпендикулярных горизонтальной плоскости проекций? Покажите их на изображении. Если вы затрудняетесь решить задачу, сделайте предмет из какого-либо материала и поставьте его, как на рисунке 87. Пусть плоскость стола - это горизонтальная плоскость проекций. Попробуйте теперь, сравнивая изображение и предмет, правильно ответить на вопросы.

Рис. 88. Изображение элементов поверхности детали

3. На рисунке 88 грани предмета выделены цветом. Обозначьте вершины буквами или цифрами. Проанализируйте, как расположены грани предмета относительно плоскостей проекций. Ответ запишите в рабочей тетради.

4. Перечертите или перенесите на кальку рисунок 89 и выделите на всех проекциях соответствующие грани тем же цветом, что и на наглядных изображениях.

Рис. 89. Задания для упражнений

5. На рисунке 90 даны изображения трех предметов. Проекции их граней обозначены буквами. Напишите, как расположены в каждом случае относительно фронтальной плоскости проекций эти грани. Пример записи: А - параллельно, Б - перпендикулярно, В - наклонно.

Рис. 90. Задания для упражнений

12.2. Построение проекций точек на поверхности предмета . Теперь рассмотрим способы построения проекций точек, лежащих на поверхностях предметов.

На рисунке 91 изображена шестиугольная пирамида. На линии, являющейся проекцией ребра, задана фронтальная проекция а точки А. Как найти ее остальные проекции?

Рис. 91. Построение проекций точки, лежащей на ребре пирамиды

Рассуждают так. Точка находится на ребре предмета. Проекции точки должны лежать на проекциях этого ребра. Следовательно, нужно сначала найти проекции ребра, а затем при помощи линий связи отыскать проекции точки.

Чтобы построить профильную проекцию предмета и, в частности, профильную проекцию ребра, на котором находится точка А, удобно воспользоваться постоянной прямой. Так называют линию, которую проводят справа от вида сверху под углом 45° к рамке чертежа (рис. 91). Линии связи, идущие от вида сверху, доводят до постоянной прямой. Из точек их пересечения проводят перпендикуляры к горизонтальной прямой и строят профильную проекцию.

Рис. 92. Построение постоянной прямой

Расположение постоянной прямой определяет место строящегося вида (рис. 91). Но если три вида уже построены, как на рисунке 92, а, нужно найти точку, через которую пройдет постоянная прямая. Для этого достаточно продолжить до взаимного пересечения горизонтальную и профильную проекции оси симметрии. Через полученную точку k (рис. 92, б) проводят прямую под углом 45° к осям. Это и будет постоянная прямая.

Если осей симметрии на чертеже нет, то продолжают до пересечения в точке k 1 горизонтальную и профильную проекции граней, проецирующихся в виде отрезков прямых. Через точку k 1 проводят постоянную прямую.

А теперь вернемся к рисунку 91. Проекции ребра, на котором лежит точка А, выделены голубым цветом. Горизонтальная проекция точки А должна лежать на горизонтальной проекции ребра. поэтому проводим из точки а" вертикальную линию связи. В месте ее пересечения с проекцией ребра находится точка а - горизонтальная проекция точки А.

Профильная проекция а" точки А лежит на профильной проекции ребра. Ее можно определить и как точку пересечения линий связи.

Мы рассмотрели, как находят на чертеже проекции точек, лежащих на ребрах предметов. Однако часто приходится строить проекции точек, лежащих не на ребрах, а на гранях. Например, чтобы просверлить в детали отверстие, надо определить, где находится его центр.

Чтобы по одной проекции точки, лежащей на грани предмета, найти остальные, нужно прежде всего найти проекции этой грани. Такие упражнения вы уже выполняли (см. рис. 89). Затем при помощи линий связи надо отыскать проекции точки, которые должны лежать на проекциях грани.

Линию связи сначала проводят к той проекции, на которой грань изображается в виде отрезка прямой.

Рис. 93. Построение проекций точки, лежащей на поверхности предмета

На рисунке 93 проекции грани, содержащие проекции точки А, выделены цветом. Точка A задана фронтальной проекцией а". Горизонтальная проекция а этой точки должна лежать на горизонтальной проекции грани. Для ее нахождения проводят вертикальную линию связи из точки а".

Чтобы найти профильную проекцию, нужно из точки а" провести горизонтальную линию связи. В месте ее пересечения с отрезком прямой - проекцией грани лежит точка а".

Построение проекций точки В, изданной горизонтальной проекцией b, также показано линиями связи со стрелками.

1. На рисунке 94, а, б даны чертежи в системе прямоугольных проекций и наглядные изображения предметов. На видах буквами обозначены проекции вершин. Перечертите или перенесите на кальку заданные изображения. Обозначьте буквами остальные проекции вершин. Найдите эти вершины на наглядных изображениях и обозначьте их буквами.

Рис. 94. Задания для упражнений

2. Перечертите или перенесите на кальку заданные изображения (рис. 95) и постройте недостающие проекции точек, заданных на ребрах предмета. Выделите цветом проекции ребер (для каждого ребра свой цвет), содержащих точки. Нанесите точки на аксонометрической проекции и выделите теми же цветами ребра, на которых лежат точки.

Рис. 95. Задание для упражнений

3. Перечертите или перенесите на кальку рисунок 96. Постройте недостающие проекции точек, заданных на видимых поверхностях предмета. Выделите цветом проекции поверхностей, на которых лежат точки (для каждой поверхности свой цвет). Выделите поверхности предмета на наглядном изображении теми же цветами, что и на чертеже, и нанесите точки.

Рис. 96. Задание для упражнений

4. Перечертите или перенесите на кальку рисунок 97. Постройте недостающие проекции точек и обозначьте их буквами. Выделите цветом, как и в предыдущем задании, проекции поверхностей, на которых лежат эти точки.

Рис. 97. Задание для упражнений

Разработка урока рекомендована для проведения урока в 8 классе "Анализ геометрической формы предмета" с приложением призентация к уроку. Изучение и первичное осознание нового учебного материала,осмысление связей и отношений в объектах изучения. Формирование и развитие умений: вспомнить геометрические тела, научиться находить простые геометрические тела, читать и строить чертежи.

Скачать:


Предварительный просмотр:

Урок черчения в 8-а классе.

Тема : «Анализ геометрической формы предмета»

Багомолова Лидия Серафимовна учитель изобразительного искусства и черчения,

ГБОУ СОШ № 416, г. Петергоф

2014 год

Тема урока : Анализ геометрической формы предмета.

1. Дидактическое обоснование урока

Цели урока : изучение и первичное осознание нового учебного материала. Осмысление связей и отношений в объектах изучения.

  1. Образовательные цели:

Способствовать формированию и развитию умений и навыков: вспомнить геометрические тела, дать понятие об анализе формы предмета, научить учащихся в любой технической детали находить простые геометрические тела.

  1. Развивающие цели:

Научить учащихся уверенно различать модели геометрических тел, правильно называть их.

Способствовать развитию речи учащихся.

Способствовать развивать пространственные мышления.

Способствовать формированию и развитию познавательного интереса учащихся к предмету.

Продолжить формирование приемов логического мышления (сравнение, анализ, синтез).

Оборудование:

Для учителя: объемные модели геометрических тел: куб, призма, пирамида, шар, цилиндр, конус; технические средства: компьютер с операционной системой МS Windows, мультимедийный проектор, экран. Презентация к уроку.

Для учащихся: раздаточный материал в виде карточек - заданий, содержащих наглядные изображения геометрических тел; деталей, состоящих из геометрических тел.

Структура урока:

  1. Организационная часть урока 1 мин.
  2. Актуализация знаний 3 мин.
  3. Изучение нового материала 23 мин.
  4. Обобщение и закрепление изученного материала 12 мин.
  5. Подведение итогов 3 мин.
  6. Домашнее задание 3 мин.

Ход урока

  1. Организационный момент - проверка присутствия. Рефлексия-

Учитель:

Создание проблемной ситуации: Посмотрите, пожалуйста, на чертеж детали, (слайд) можете - ли вы определить форму детали?

Ученики: Достаточно сложно.

В этом нам поможет тема нашего урока. Запишите тему сегодняшнего урока в тетрадь (слайд) «Анализ геометрической формы предмета». Прочитайте тему еще раз и попытайтесь определить цели урока: О чем хотите узнать? Какие вопросы возникли?

Ученики: 1. Что такое анализ геометрической формы предмета?

2. Для чего он необходим?

3. Какие геометрические формы существуют?

Сегодня на уроке мы должны научиться анализировать геометрическую форму предметов, а для этого нам необходимо умение слушать, анализировать, уметь выделять самое главное и существенное.

Поможет раскрыть тему нашего урока - план нашей работы. (слайд-3)

Мы с вами рассмотрим следующие вопросы:

  1. Понятие о формах геометрических тел.
  2. Геометрические тела в основе формы деталей.
  3. Как легче определить форму предмета?

Предлагаю вспомнить, какие геометрические тела вам знакомы из предмета «геометрия, и из предыдущих наших тем, когда мы строили аксонометрические проекции плоских фигур и плоскогранных предметов?

Ученики: цилиндр, куб, параллелепипед и т.д.

Учитель: Что такое геометрическое тело? Геометрическое тело – это замкнутая часть пространства, ограниченная плоскими и кривыми поверхностями.

Все геометрические тела можно разделить на две группы: Многогранники – которые имеют плоские грани, и тела вращения, которые имеют криволинейные поверхности (слайд) (записать в тетрадь).

У каждого геометрического тела есть свои признаки (слайд)

По этим признакам мы отличаем шар от куба и т.д. С большинством этих тел вы уже знакомы. Мы говорим «куб» и каждый представляет его форму. Говорим « шар» и опять в нашем сознании возникает образ определенного геометрического тела. Давайте познакомимся с ними поближе. (слайды)

Сейчас проверим, как хорошо вы представляете изображения геометрических тел. На ваших столах лежат карточки. Задание: Выписать в тетради в один столбик номера изображений гранных геометрических тел и их названия, а в другой столбик – тела вращения. (слайд)

Проверим, как справились с заданием ребята.

(При необходимости все вместе исправляют ошибки в ответах)

К гранным геометрическим телам относятся: 1. шестиугольная призма, 2. шестиугольная пирамида, 3. параллелепипед, 4. куб, 5. шестиугольная усеченная пирамида, 6. шестиугольная призма, 7. шестиугольная усеченная призма.

К геометрическим телам вращения. 1. цилиндр, 2. конус,3. усеченный конус. 4. шар, 5. Тор.

Присмотритесь внимательно к окружающим нас предметам.

Они также имеют форму геометрических тел или их сочетание. Я называю тела, а вы приводите примеры предметов:

Шар-пирамида - призма-конус-цилиндр-тор.

В технике часто сравнивают форму детали с более простыми формами-геометрическими телами, а также используют формы геометрических тел для описания формы более сложных деталей (слайд).

Любая простая форма технической детали может быть представлена как форма геометрического тела (например, форма технической детали «ось» может быть представлена как форма цилиндр - (слайд), а форма сложного изделия- как сочетание форм геометрических тел(например деталь «вилка»)

В основу рассмотренного подхода к изучению деталей положен анализ его геометрической формы.

Анализ геометрической формы предмета - это мысленное расчленение предмета на составляющие его геометрические тела . (записать в тетради) (слайд).

Рассмотрим, как осуществляется анализ геометрической формы предмета по наглядному изображению детали. Деталь мысленно расчленяем на простые геометрические тела, называем их и рассказываем, как они расположены относительно друг друга в пространстве (слайд).

Дано изображение детали. Какова ее форма? Она слагается из прямоугольного параллелепипеда, двух полуцилиндров и усеченного конуса, расположенного сверху. В детали имеется отверстие цилиндрической формы.

Применяя способ расчленения детали на простые геометрические тела, можно научиться быстро, правильно читать чертежи и грамотно их выполнять .

Задание: проанализировать форму детали, которую смотрели в начале урока (слайд).

Деталь «Опора» состоит из прямоугольного параллелепипеда с пятью сквозными цилиндрическими отверстиями. В центре верхней грани прямоугольного параллелепипеда расположена четырехугольная призма со сквозным цилиндрическим отверстием, ость и диаметр которого совпадают с осью и диаметром отверстия детали. Параллелепипеды соединены между собой двумя ребрами жесткости, имеющими форму треугольных призм, что обеспечивает устойчивое их крепление.