Химические свойства гидроксидов металлов. Оксиды: классификация и химические свойства

Химические свойства гидроксидов металлов. Оксиды: классификация и химические свойства

Калия, натрия или лития, могут взаимодействовать с водой. В этом случае в продуктах реакции обнаруживаются соединения, относящиеся к гидроксидам. Свойства этих веществ, особенности протекания химических процессов, в которых участвуют основания, обусловлены присутствием в их молекулах гидроксильной группы. Так, в реакциях электролитической диссоциации основания расщепляются на ионы металла и анионы OH - . Как основания взаимодействуют с оксидами неметаллов, кислотами и солями, мы и рассмотрим в нашей статье.

Номенклатура и строение молекулы

Чтобы правильно назвать основание, требуется к названию металлического элемента прибавить слово гидроксид. Приведем конкретные примеры. Основание алюминия относится к амфотерным гидроксидам, свойства которых мы рассмотрим в статье. Обязательное присутствие в молекулах оснований гидроксильной группы, связанной с катионом металла ионным типом связи, можно определить с помощью индикаторов, например, фенолфталеина. В водной среде избыток ионов OH - определяется по изменению цвета раствора индикатора: бесцветный фенолфталеин становится малиновым. Если металл проявляет несколько валентностей, он может образовывать несколько оснований. Например, железо имеет два основания, в которых равна 2 или 3. Первое соединение характеризуется признаками второе - амфотерных. Поэтому свойства высших гидроксидов отличаются от соединений, в которых металл имеет низшую степень валентности.

Физическая характеристика

Основания - это твердые вещества, устойчивые к нагреванию. По отношению к воде они делятся на растворимые (щелочи) и нерастворимые. Первая группа образована активными в химическом отношении металлами - элементами первой и второй групп. Нерастворимые в воде вещества состоят из атомов других металлов, чья активность уступает натрию, калию или кальцию. Примерами таких соединений могут служить основания железа или меди. Свойства гидроксидов будут зависеть от того, к какой группе веществ они относятся. Так, щелочи являются термически прочными и не разлагаются при нагревании, тогда, как нерастворимые в воде основания под действием высокой температуры разрушаются, образуя оксид и воду. Например, основание меди разлагается следующим образом:

Cu(OH) 2 = CuO + H 2 O

Химические свойства гидроксидов

Взаимодействие между собой двух важнейших групп соединений - кислот и оснований - именуют в химии реакцией нейтрализации. Такое название можно объяснить тем, что химически агрессивные гидроксиды и кислоты образуют нейтральные продукты - соли и воду. Являясь, по сути, обменным процессом между двумя сложными веществами, нейтрализация характерна как для щелочей, так и для нерастворимых в воде оснований. Приведем уравнение реакции нейтрализации между едким калием и хлоридной кислотой:

KOH + HCl = KCl + H 2 O

Важное свойство оснований щелочных металлов является их способность реагировать с кислотными оксидами, в результате можно получить соль и воду. Например, пропуская через гидроксид натрия углекислый газ, можно получить его карбонат и воду:

2NaOH + CO 2 = Na 2 CO 3 + H 2 O

К реакциям ионного обмена относится взаимодействие между щелочами и солями, идущее с образованием нерастворимых гидроксидов или солей. Так, приливая по каплям раствор в раствор сернокислой меди, можно получить голубой желеобразный осадок. Это основание меди, нерастворимое в воде:

CuSO 4 + 2NaOH = Cu(OH) 2 + Na 2 SO 4

Химические свойства гидроксидов, нерастворимых в воде, отличаются от щелочей тем, что они при небольшом нагревании теряют воду - дегидратируются, переходя в форму соответствующего основного окисла.

Основания, проявляющие двойственные свойства

Если элемент или может реагировать и с кислотами, и с щелочами - его называют амфотерным. К таковым относятся, например, цинк, алюминий и их основания. Свойства амфотерных гидроксидов позволяют записывать их молекулярные формулы как в выделяя при этом гидроксогруппу, так и в виде кислот. Представим несколько уравнений реакций основания алюминия с хлоридной кислотой и гидроксидом натрия. Они иллюстрируют особые свойства гидроксидов, относящихся к амфотерным соединениям. Вторая реакция проходит с распадом щелочи:

2Al(OH) 3 + 6HCl = 2AlCl 3 + 3H 2 O

Al(OH) 3 + NaOH = NaAlO 2 + 2H 2 O

Продуктами процессов будут вода и соли: хлорид алюминия и алюминат натрия. Все амфотерные основания не растворяются в воде. Добывают их в результате взаимодействия соответствующих солей и щелочей.

Способы получения и применение

В промышленности, требующей больших объемов щелочей, их получают электролизом солей, содержащих катионы активных металлов первой и второй группы периодической системы. Сырьем для добычи, например, едкого натрия, служит раствор поваренной соли. Уравнение реакции будет таким:

2NaCl + 2H 2 O = 2NaOH + H 2 + Cl 2

Основания малоактивных металлов в лаборатории получают взаимодействием щелочей с их солями. Реакция относится к типу ионного обмена и заканчивается выпадением осадка основания. Простой способ получения щелочей - это реакция замещения, проходящая между активным металлом и водой. Она сопровождается разогреванием реагирующей смеси и относится к экзотермическому типу.

Свойства гидроксидов используют в промышленности. Особую роль здесь играют щелочи. Их применяют в качестве очистителей керосина и бензина, для получения мыла, обработки натуральной кожи, а также в технологиях производства искусственного шелка и бумаги.

Так как оксиды d-металлов нерастворимы в воде, их гидроксиды получают косвенным путем с помощью обменных реакций между их солями и растворами щелочей:

ZnCl 2 + 2NaOH = Zn(OH) 2 + 2NaCl;

MnCl 2 + 2NaOH = Mn(OH) 2 + 2NaCl (в отсутствии кислорода);

FeSO 4 + 2KOH = Fe(OH) 2 + K 2 SO 4 (в отсутствии кислорода) .

Гидроксиды d-элементов в низших степенях окисления являются слабыми основаниями; они нерастворимы в воде, но хорошо растворяются в кислотах:

Cu(OH) 2 + 2HCl = CuCl 2 + H 2 O

Cu(OH) 2 + H 2 SO 4 = CuSO 4 + H 2 O

Гидроксиды d-элементов в промежуточных степенях окисления и гидроксид цинка растворяются не только в кислотах, но и в избытке растворов щелочей с образованием гидроксокомплексов (т.е. проявляют амфотерные свойства), например:

Zn(OH) 2 + H 2 SO 4 = ZnSO 4 + 2H 2 O;

Zn(OH) 2 + 2NaOH = Na 2 ;

Cr(OH) 3 + 3HNO 3 = Cr(NO 3) 3 + 3H 2 O;

Cr(OH) 3 + 3KOH = K 3 .

В более высоких степенях окисления переходные металлы образуют гидроксиды, которые проявляют кислотные свойства или амфотерные свойства с преобладанием кислотных:

С увеличением степени окисления элемента основные свойства оксидов и гидроксидов ослабевают, а кислотные - возрастают.

Поэтому, по периоду слева направо наблюдается усиление кислотных свойств гидроксидов d-металлов в высших степенях окисления до подгруппы Mn, затем кислотные свойства ослабевают:

Sc(OH) 3 - TiO 2 xH 2 O - V 2 O 5 xH 2 O - H 2 CrO 4 - HMnO 4

Усиление кислотных свойств

Fe(OH) 3 - Co(OH) 2 - Cu(OH) 2 - Zn(OH) 2

Медленное ослабление кислотных свойств

Рассмотрим изменение свойств гидроксидов d-металлов в подгруппах. Сверху вниз по подгруппе основные свойства гидроксидов d-элементов в высших степенях окисления возрастают, кислотные свойства уменьшаются. Например, для шестой группы d-металлов:

H 2 CrO 4 - резко - MoO 3 H 2 O - слабо - WO 3 H 2 O

Кислотные свойства уменьшаются

Окислительно-восстановительные свойства соединений d-элементов

Соединения d - элементов в низших степенях окисления проявляют, в основном, восстановительные свойства, особенно в щелочной среде. Поэтому, например, гидроксиды Mn(+2), Cr(+2), Fe(+2) являются очень неустойчивыми и быстро окисляются кислородом воздуха:

2Mn(OH)2 + O2 + 2H2O = 2Mn(OH)4;

4Cr(OH) 2 + O 2 + 2H 2 O = 4Cr(OH) 3

Чтобы гидроксид кобальта (II) или никеля (II) перевести в Co(OH) 3 или Ni(OH) 3 , необходимо использовать более сильный окислитель - например, перекись водорода H 2 O 2 в щелочной среде или бром Br 2:

2Co(OH) 2 + H 2 O 2 = 2Co(OH) 3;

2 Ni(OH) 2 + Br 2 +2NaOH = 2 Ni(OH) 3 + 2NaBr

Производные Ti(III), V(III), V(II), Cr (II) легко окисляются на воздухе, некоторые соли могут окисляться даже водой :

2Ti 2 (SO 4) 3 + O 2 + 2H 2 O = 4TiOSO 4 + 2H 2 SO 4;

2CrCl 2 + 2H 2 O = 2Cr(OH) Cl 2 + H 2

Соединения d-элементов в высших степенях окисления (от +4 до +7) обычно проявляют окислительные свойства. Однако, соединения Ti (IV) и V (V) всегда устойчивы и поэтому обладают относительно слабыми окислительными свойствами:

TiOSO 4 + Zn + H 2 SO 4 = Ti 2 (SO 4) 3 + ZnSO 4 + H 2 O;

Na 3 VO 4 + Zn + H 2 SO 4 = VOSO 4 + ZnSO 4 + H 2 O

Восстановление идет в жестких условиях - атомарным водородом в момент его выделения (Zn + 2H + = 2H· + Zn 2+).

А соединения хрома в высших степенях окисления являются сильными окислителями, особенно в кислой среде:

K2Cr2O7 + 3SO2 + H2SO4 = Cr2(SO4)3 + K2SO4 + H2O;

2CrO 3 + C 2 H 5 OH = Cr 2 O 3 + CH 3 COH + H 2 O

Еще более сильные окислительные свойства проявляют соединения Mn(VI), Mn(VII) и Fe(VI):

2KMnO 4 + 6KI + 4H 2 O = 2MnO 2 + 3I 2 + 8KOH;

4K 2 FeO 4 + 10H 2 SO 4 = 2Fe 2 (SO 4) 3 + 3O 2 +10H 2 O+ 4K 2 SO 4

Таким образом, окислительные свойства соединений d-элементов в высших степенях окисления по периоду слева направо возрастают.

Окислительная способность соединений d-элементов в высших степенях окисления по подгруппе сверху вниз ослабевает . Например, в подгруппе хрома: бихромат калия K 2 Cr 2 O 7 взаимодействует даже с таким слабым восстановителем, как SO 2 . Чтобы восстановить молибдат- или вольфрамат-ионы необходим очень сильный восстановитель, например, солянокислый раствор хлорида олова (II):

K 2 Cr 2 O 7 + SO 2 + H 2 SO 4 = Cr 2 (SO 4) 3 + K 2 SO 4 + H 2 O

3 (NH 4) 2 MoO 4 + НSnCl 3 + 9HCl = MoO 3 MoO 5 + H 2 SnCl 6 +4H 2 O + 6NH 4 Cl

Последняя реакция идет при нагревании, а степень окисления d-элемента уменьшается совсем незначительно.

Соединения d-металлов в промежуточной степени окисления обладают окислительно-восстановительной двойственностью . Например, соединения железа (III) в зависимости от характера вещества-партнера могут проявлять как свойства восстановителя:

2FeCl3 + Br2 + 16KOH = 2K2FeO4 + 6KBr + 6KCl +8H2O,

так и окислительные свойства:

2FeCl 3 + 2KI = 2FeCl 2 + I 2 +2KCl.


  • Оксиды – бинарные соединения, в состав которых входит кислород.
  • Оксиды металлов – твердые вещества.
  • Гидроксиды – сложные вещества, соответствующие оксидам, если к ним присоединены одна или несколько гидроксидных групп.

  • 1.Металл + кислород = оксид или пероксид.
  • 2.Металл + вода = водород + щелочь (если основание растворимо в воде)

или = водород + основание (если основание не растворимо в воде)

Реакция протекает только в том случае, если

металл находится в ряду активности до водорода.

Основание – сложное вещество, в котором каждый атом металла связан с одной или несколькими гидроксогруппами.


  • Оксиды и гидроксиды металлов

в степенях окисления +1 и +2 проявляют основные свойства ,

  • в степенях окисления +3, +4, +5 проявляют амфотерные ,
  • в степенях окисления +6, +7 проявляют кислотные .




Заполнить таблицу:

металлов главных подгрупп I - III групп

Вопросы для сравнения

I группа

  • Общая формула оксида.

II группа

2. Физические свойства.

III группа

  • Характер оксидов

Взаимодействие:

а) с водой

б) с кислотами

в) с кислотными оксидами

г) с амфотерными оксидами

д) со щелочами

5. Формула гидроксида.

6. Физические свойства

  • Характер гидроксидов

Взаимодействие:

а) действие на индикаторы

б) с кислотами

в) с кислотными оксидами

г) с растворами солей

д) с неметаллами

е) со щелочами

з) отношение к нагреванию


Свойства оксидов и гидроксидов в периоде изменяются от основных через амфотерные к кислотным, т.к. увеличивается положительная степень окисления элементов.

Na 2 O , Mg +2 O , Al 2 O 3

основные амфотерный

Na +1 O Н , Mg +2 (O Н ) 2 , Al +3 (O Н ) 3

щелочь Слабое Амфотерный

основание гидроксид

В главных подгруппах основные свойства оксидов и гидроксидов возрастают сверху вниз .


Соединения металлов I А группы

Оксиды щелочных металлов

Общая формула Ме 2 О

Физические свойства: Твердые, кристаллические вещества, хорошо растворимые в воде.

Li 2 O , Na 2 O – бесцветные, К 2 О, Rb 2 O – желтые, Cs 2 О – оранжевый.

Способы получения:

Окислением металла получается только оксид лития

4 Li + O 2 → 2 Li 2 O

(в остальных случаях получаются пероксиды или надпероксиды).

Все оксиды (кроме Li 2 O) получают при нагревании смеси пероксида (или надпероксида) с избытком металла:

Na 2 O 2 + 2Na → 2Na 2 O

KO 2 + 3K → 2K 2 O

Химические свойства

Типичные основные оксиды:

Взаимодействуют с водой, образуя щелочи: Na 2 О + H 2 O →

2. Взаимодействуют с кислотами, образуя соль и воду: Na 2 О + Н Cl →

3. Взаимодействуют с кислотными оксидами, образуя соли: Na 2 О + SO 3 →

4. Взаимодействуют с амфотерными оксидами, образуя соли: Na 2 О + ZnO → Na 2 ZnO 2


Гидроксиды щелочных металлов

Общая формула – МеОН

Физические свойства: Белые кристаллические вещества, гигроскопичны, хорошо растворимы в воде (с выделением тепла). Растворы мылкие на ощупь, очень едкие.

NaOH – едкий натр

КОН – едкое кали

Сильные основания - Щелочи. Основные свойства усиливаются в ряду:

LiOH NaOH KOH RbOH CsOH

Способы получения:

1. Электролиз растворов хлоридов:

2NaCl + 2H 2 O 2NaOH + H 2 + Cl 2

2. Обменные реакции между солью и основанием:

K 2 CO 3 + Ca(OH) 2 CaCO 3  + 2KOH

3. Взаимодействие металлов или их основных оксидов (или пероксидов и надпероксидов) с водой:

2 Li + 2 H 2 O 2 LiOH + H 2

Li 2 O + H 2 O 2 LiOH

Na 2 O 2 + 2 H 2 O 2 NaOH + H 2 O 2


Химические свойства

1. Изменяют цвет индикаторов:

Лакмус – на синий

Фенолфталеин – на малиновый

Метил-оранж – на желтый

2. Взаимодействуют со всеми кислотами.

NaOH + HCl → NaCl + H 2 O

3. Взаимодействуют с кислотными оксидами.

2NaOH + SO 3 → Na 2 SO 4 + H 2 O

4. Взаимодействуют с растворами солей, если образуется газ или осадок.

2 NaOH + CuSO 4 → Cu(OH) 2 ↓ + Na 2 SO 4

5. Взаимодействуют с некоторыми неметаллами (серой, кремнием, фосфором)

2 NaOH +Si + H 2 O → Na 2 SiO 3 + 2H 2

6. Взаимодействуют с амфотерными оксидами и гидроксидами

2 NaOH + Zn О + H 2 O → Na 2 [ Zn (OH) 4 ]

2 NaOH + Zn (ОН) 2 → Na 2 [ Zn (OH) 4 ]

7. При нагревании не разлагаются, кроме LiOH .


II группы

Оксиды металлов II А группы

Общая формула МеО

Физические свойства: Твердые, кристаллические вещества белого цвета, малорастворимые в воде.

Способы получения:

Окисление металлов (кроме Ba , который образует пероксид)

2Са + О 2 → 2СаО

2) Термическое разложение нитратов или карбонатов

CaCO 3 → CaO + CO 2

2Mg(NO 3) 2 → 2MgO + 4NO 2 + O 2

Химические свойства

ВеО – амфотерный оксид

Оксиды Mg , Ca , Sr , Ba – основные оксиды

Взаимодействуют с водой(кроме ВеО), образуя щелочи(Mg (OH) 2 – слабое основание):

СаО + H 2 O →

2. Взаимодействуют с кислотами, образуя соль и воду: СаО + Н Cl →

3. Взаимодействуют с кислотными оксидами, образуя соли: СаО + SO 3 →

4. ВеО взаимодействует со щелочами: ВеО + 2 NaOH + H 2 O → Na 2 [Ве(OH) 4 ]


Гидроксиды металлов II А группы

Общая формула – Ме(ОН) 2

Физические свойства: Белые кристаллические вещества, в воде растворимы хуже, чем гидроксиды щелочных металлов. Ве(ОН) 2 – в воде нерастворим.

Основные свойства усиливаются в ряду:

Ве(ОН) 2 Mg (ОН) 2 Ca (ОН) 2 Sr (ОН) 2 → В a (ОН) 2

Способы получения:

Реакции щелочноземельных металлов или их оксидов с водой:

Ba + 2 H 2 O → Ba (OH) 2 + H 2

CaO (негашеная известь) + H 2 O → Ca (OH) 2 (гашеная известь)


Химические свойства

Ве(ОН) 2 – амфотерный гидроксид

Mg (ОН) 2 – слабое основание

Са(ОН) 2 , Sr (ОН) 2, Ва(ОН) 2 – сильные основания – щелочи.

Изменяют цвет индикаторов:

Лакмус – на синий

Фенолфталеин – на малиновый

Метил-оранж – на желтый

2. Взаимодействуют с кислотами, образуя соль и воду:

Ве(ОН) 2 + Н 2 SO 4 →

3. Взаимодействуют с кислотными оксидами:

Са(ОН) 2 + SO 3 →

4. Взаимодействуют с растворами солей, если образуется газ или осадок:

Ва(ОН) 2 + K 2 SO 4 →

Гидроксид бериллия взаимодействует со щелочами:

Ве(ОН) 2 + 2 NaOH → Na 2 [Ве(OH) 4 ]

При нагревании разлагаются: Са(ОН) 2 →


Соединения металлов главной подгруппы III группы

Соединения алюминия

Оксид алюминия

Al 2 O 3

O = Al O Al = O

Физические свойства: Глинозем, корунд, окрашенный – рубин (красный), сапфир (синий).

Твердое тугоплавкое (t° пл.=2050 ° С) вещество; существует в нескольких кристаллических модификациях.

Способы получения:

Сжигание порошка алюминия: 4 Al + 3 O 2 → 2 Al 2 O 3

Разложение гидроксида алюминия: 2 Al (OH) 3 → Al 2 O 3 + 3 H 2 O


Химические свойства

Al 2 O 3 - амфотерный оксид с преобладанием основных свойств; с водой не реагирует.

Как основной оксид: Al 2 O 3 + 6 HCl → 2 AlCl 3 + 3 H 2 O

Как кислотный оксид: Al 2 O 3 + 2 NaOH + 3 H 2 O → 2 Na [ Al (OH) 4 ]

2) Сплавляется со щелочами или карбонатами щелочных металлов:

Al 2 O 3 + Na 2 CO 3 → 2 NaAlO 2 (алюминат натрия) + CO 2

Al 2 O 3 + 2 NaOH → 2 NaAlO 2 + H 2 O


Гидроксид алюминия Al ( OH ) 3

Физические свойства: белое кристаллическое вещество,

нерастворимое в воде.

Способы получения:

1) Осаждением из растворов солей щелочами или гидроксидом аммония:

AlCl 3 + 3NaOH → Al(OH) 3 + 3NaCl

Al 2 (SO 4) 3 + 6NH 4 OH → 2Al(OH) 3 + 3(NH 4) 2 SO 4

Al 3+ + 3 OH ¯ → Al (OH) 3 (белый студенистый)

2) Слабым подкислением растворов алюминатов:

Na + CO 2 → Al(OH) 3 + NaHCO 3

Химические свойства

Al ( OH ) 3 - а мфотерный гидроксид :

1) Реагирует с кислотами и растворами щелочей:

Как основание Al (OH) 3 + 3 HCl → AlCl 3 + 3 H 2 O

Как кислота Al (OH) 3 + NaOH → Na [ Al (OH) 4 ]

(тетрагидроксоалюминат натрия)

При нагревании разлагается: 2 Al (OH) 3 → Al 2 O 3 + 3 H 2 O


Заполнить таблицу: Сравнительная характеристика оксидов и гидроксидов

металлов главных подгрупп I - III групп

Вопросы для сравнения

I группа

  • Общая формула оксида.

II группа

Степень окисления Ме в оксиде.

2. Физические свойства.

III группа

3. Химические свойства (сравнить).

4. Способы получения оксидов.

  • Характер оксидов

Взаимодействие:

а) с водой

б) с кислотами

в) с кислотными оксидами

г) с амфотерными оксидами

д) со щелочами

5. Формула гидроксида.

Степень окисления Ме в гидроксиде.

6. Физические свойства

7. Химические свойства (сравнить).

  • Характер гидроксидов

8. Способы получения гидроксидов.

Взаимодействие:

а) действие на индикаторы

б) с кислотами

в) с кислотными оксидами

г) с растворами солей

д) с неметаллами

е) со щелочами

ж) с амфотерными оксидами и гидроксидами

з) отношение к нагреванию

  1. Основания способны реагировать с кислотами и кислотными оксидами. В ходе взаимодействия происходит образование солей и воды
  2. Щелочи, гидроксид аммония всегда реагируют с растворами солей, только в случае образования нерастворимых оснований:
  3. Реакция кислоты с основанием именуется нейтрализацией. В ходе данной реакции, катионы кислот Н + и анионы оснований ОН - образуют молекулы воды. После чего, среда раствора становится нейтральной. В результате начинается выделение тепла. В растворах, это ведет к постепенному нагреву жидкости. В случае крепких растворов, тепла более чем достаточно, чтобы жидкость начала кипеть. Необходимо помнить, что реакция нейтрализации происходит достаточно быстро.

Сильные основания

  • NaOH гидроксид натрия (едкий натр)
  • KOH гидроксид калия (едкое кали)
  • LiOH гидроксид лития
  • Ba(OH) 2 гидроксид бария
  • Ca(OH) 2 гидроксид кальция (гашеная известь)

Слабые основания

  • Mg(OH) 2 гидроксид магния
  • Fe(OH) 2 гидроксид железа (II)
  • Zn(OH) 2 гидроксид цинка
  • NH 4 OH гидроксид аммония
  • Fe(OH) 3 гидроксид железа (III)

Химические свойства амфотерных гидроксидов

  1. Амфотерные основания реагируют и с кислотами и со щелочами. В ходе взаимодействия происходит образование соли и воды. При прохождении какой - либо реакции с кислотами, амфотерные основания всегда проявляют свойства типичных оснований.
  2. В ходе реакции со щелочами, амфотерные основания способны проявлять свойства кислот. В процессе сплавления со щелочами, образуется соль и вода.
  3. При взаимодействии с растворами щелочей, всегда будут образовываться комплексные соли.
  4. Щелочи растворяют амфотерные металлы. В ходе данной реакции выделяется водород. В результате данной химической реакции, при опускании в раствор щелочи алюминия, выделяется газ. Так же это можно увидеть при его поджигании.

Гидроксиды и их классификация

Основания образуются атомами металлов и гидроксогруппой (ОН -), поэтому их называют гидроксидами.

1. По отношению к воде основания подразделяются на:

  • растворимые - гидроксиды щелочных и щелочноземельных металлов, поэтому их называют щелочами, гидроксид аммония, но он слабый электролит. Основания, образованные остальными металлами в воде не растворяются. Щелочи в водном растворе диссоциируются полностью до катионов металла и анионов гидроксид - ионов ОН - .
  • нерастворимые

2. По взаимодействию с иными химическими веществами гидроксиды делятся на:

  • основные гидроксиды - заряд катиона равен +1 или +2
  • кислотные гидроксиды (кислородсодержащие кислоты),
  • амфотерные гидроксиды - заряд катиона равен +3 или +4

Ряд исключений:

  • La(OH) 3 , Bi(OH) 3 , Tl(OH) 3 – основания;
  • Be (OH) 2 , Sn (OH)2, Pb(OH) 2 , Zn(OH) 2 , Ge(OH) 2 - амфотерными основания.

Смотри химические свойства

В Е Щ Е С Т В А

_________________________________

простые сложные

____/______ ______________/___________

металлы неметаллы оксиды гидроксиды соли

К, Ва S, P Р 2 О 5 H 2 SO 4 Cu(NO 3) 2

Na 2 O Вa(ОH) 2 Na 2 CO 3

Рассмотрим классификацию, химические свойства и методы получения сложных веществ.

ОКСИДЫ

ОКСИД – это сложное вещество, состоящее из двух элементов, один из которых кислород, находящийся в степени окисления -2.

Исключения составляют:

1) соединения кислорода и фтора – фториды: например, фторид кислорода OF 2 (степень окисления кислорода в этом соединении +2)

2) пероксиды (соединения некоторых элементов с кислородом, в которых имеется связь между атомами кислорода), например:

пероксид водорода Н 2 О 2 пероксид калия K 2 O 2

Примеры оксидов: оксид кальция - СаО, оксид бария - ВаО. Если элемент образует несколько оксидов, то в их названии в скобках указывается римской цифрой валентность элемента, например: оксид серы (IV) - SO 2 , оксид серы (VI) - SO 3 .

Все оксиды можно разделить на две большие группы: солеобразующие(образующие соли) и несолеобразующие.

Солеобразующие подразделяют на три группы: основные, амфотерные и кислотные.

О К С И Д Ы

_________________/__________________

солеобразующие несолеобразующие

СО, N 2 O, NO

↓ ↓ ↓

основные амфотерные кислотные

(им (им соответсвуют

соответствуют, кислоты)

основания)

CaO, Li 2 O ZnO, BeO, PbO P 2 O 5 , Mn 2 О 7

Cr 2 O 3 , Al 2 O 3

Неметаллы образуют кислотные оксиды, например: оксид азота (V) – N 2 O 5 , оксид углерода (IV) - CO 2 . Металлы с валентностью меньше трех, как правило, образуют основные оксиды, например: оксид натрия -Na 2 O, оксид магния – MgO; а с валентностью больше четырех – кислотные оксиды, например, оксид марганца (VII) - Mn 2 O 7 , оксид вольфрама (VI) - WO 3 .

Рассмотрим химические свойства кислотных и основных оксидов.

ХИМИЧЕСКИЕ СВОЙСТВА ОКСИДОВ

ОСНОВНЫХ КИСЛОТНЫХ

Взаимодействие с водой

Продуктом реакции является:

основание кислота

(если, в состав оксида P 2 O 5 + 3H 2 O à 2H 3 PO 4

входит активный металл, SiO 2 +H 2 O ≠

Li, Na, K, Rb, Cs, Fr, Ba, Ca)

CaO + H 2 O à Ca(OH) 2

2. Взаимодействие друг с другом, образуя соли CuO + SO 3 à CuSO 4

3. Взаимодействие с гидроксидами:

С растворимыми кислотами, с растворимыми основаниями

в результате реакции образуютсясоль и вода

CuO + Н 2 SO 4 àCuSO 4 + H 2 O CO 2 +Ca(OН) 2 àCaCO 3 + Н 2 О

Менее летучие оксиды

Вытесняют более летучие

из их солей :

K 2 CO 3 + SiO 2 à K 2 SiO 3 + CO 2

К числу амфотерных оксидов относят: оксиды металлов с валентностью, равной трем, например: оксид алюминия -Al 2 O 3, оксид хрома (III) - Cr 2 O 3 , оксид железа (III) - Fe 2 O 3, а также несколько исключений, в которых металл двухвалентен, например: оксид бериллия BeO, оксид цинка ZnO, оксид свинца (II) – PbO. .

Амфотерные оксиды обладают двойственной природой: они одновременно способны к реакциям, в которые вступают как основные и как кислотные оксиды

Докажем амфотерный характер оксида алюминия. Приведем уравнения реакций взаимодействия с соляной кислотой и щелочью (в водном растворе и при нагревании). При взаимодействии оксида алюминия и соляной кислоты, образуется соль - хлорид алюминия. В этом случае оксид алюминия выступает в роли основного оксида.

Al 2 O 3 + 6HCl à2AlCl 3 + 3H 2 O

как основный

В водном растворе происходит образование комплексной соли -

тетрагидроксоалюмината натрия:

Al 2 O 3 + 2NaOH + 3H 2 Oà 2Na тетрагидроксоалюминат натрия

как кислотный

При сплавлении со щелочами образуется метаалюминаты.

Представим молекулу гидроксида алюминия Al(OH) 3 в форме кислоты, т.е. на первом месте запишем все атомы водорода, на втором кислотный остаток:

H 3 AlO 3 - алюминиевая кислота

Для трехвалентных металлов из формулы кислоты вычтем 1 Н 2 О, получив метаалюминиевую кислоту:

- Н 2 О

HAlO 2 - метаалюминиевая кислота

сплавление

Al 2 O 3 +2 NaOHà 2NaAlO 2 + Н 2 О метаалюминат натрия

как кислотный

МЕТОДЫ ПОЛУЧЕНИЯ ОКСИДОВ:

1. Взаимодействие простых веществ с кислородом:

4Al + 3O 2 à 2Al 2 O 3

2. Горение или обжиг сложных веществ:

CH 4 + 2O 2 à CO 2 + 2H 2 O

2ZnS + 3O 2 à 2SO 2 + 2ZnO

3. Разложение при нагревании нерастворимых гидроксидов:

Cu(OH) 2 à CuO + H 2 O H 2 SiO 3 à SiO 2 + H 2 O

4. Разложение при нагревании средних и кислых солей:

CaCO 3 à CaO + CO 2

2КHCO 3 àK 2 CO 3 + CO 2 +H 2 O

4AgNO 3 à4Ag + 4NO 2 + O 2

ГИДРОКСИДЫ

Гидроксиды подразделяют на три группы: основания, кислоты и амфотерные гидроксиды (проявляющие свойства, как оснований, так и кислот).

ОСНОВАНИЕ – это сложное вещество, состоящее из атомов металла и одной или нескольких гидроксогрупп

(– ОН).

Например: гидроксид натрия - NaOH, гидроксид бария Ва(ОН) 2 . Количество гидроксогрупп в молекуле основания равно валентности металла.

КИСЛОТА – это сложное вещество, которое состоит из атомов водорода, способных замещаться на атомы металла, и кислотного остатка.

Например: серная кислота – H 2 SO 4 , фосфорная кислота - Н 3 РО 4 .

Валентность кислотного остатка определяется количеством атомов водорода. В химических соединениях сохраняется валентность кислотного остатка (см. таблицу 1).

ТАБЛИЦА 1 ФОРМУЛЫ НЕКОТОРЫХ КИСЛОТ И

КИСЛОТНЫХ ОСТАТКОВ

Название кислоты Формула Кислотный остаток Валентность кислотного остатка Название соли, образованной этой кислотой
Плавиковая НF F I фторид
Соляная НCl Cl I хлорид
Бромоводородная НBr Br I бромид
Йодоводородная НI I I йодид
Азотная HNO 3 NO 3 I нитрат
Азотистая HNO 2 NO 2 I нитрит
Уксусная СН 3 COOH СН 3 COO I ацетат
Серная H 2 SO 4 SO 4 II сульфат
Сернистая H 2 SO 3 SO 3 II сульфит
Сероводородная H 2 S S II сульфид
Угольная H 2 CO 3 CO 3 II карбонат
Кремневая H 2 SiO 3 SiO 3 II силикат
Фосфорная H 3 PO 4 PO 4 III фосфат

По растворимости в воде гидроксиды делятся на две группы: растворимые (например, КОН, H 2 SO 4) и нерастворимые (H 2 SiO 3 , Сu(OH) 2). Растворимые в воде основания называются щелочами.