Моделирование. Моделирование как метод исследования Схема построения конструкции

Моделирование. Моделирование как метод исследования Схема построения конструкции

курсовая РАБОТА

«Методы моделирования»

Введение

Метод конечных элементов и метод конечных разностей

Метод конечных объёмов

Метод подвижных клеточных автоматов

Метод молекулярной динамики

Метод дискретного элемента

Метод компонентных цепей

Метод узловых потенциалов

Метод переменных состояния

Заключение

Литература

Введение

Компьютерная модель (англ. computer model), или численная модель (англ. computational model) - компьютерная программа, работающая на отдельном компьютере, суперкомпьютере или множестве взаимодействующих компьютеров (вычислительных узлов), реализующая абстрактную модель некоторой системы. Компьютерные модели стали обычным инструментом математического моделирования и применяются в физике, астрофизике, механике, химии, биологии, экономике, социологии, метеорологии, других науках и прикладных задачах в различных областях радиоэлектроники, машиностроения, автомобилестроения и проч. Компьютерные модели используются для получения новых знаний о моделируемом объекте или для приближенной оценки поведения систем, слишком сложных для аналитического исследования.

Компьютерное моделирование является одним из эффективных методов изучения сложных систем. Компьютерные модели проще и удобнее исследовать в силу их возможности проводить т. н. вычислительные эксперименты, в тех случаях, когда реальные эксперименты затруднены из-за финансовых или физических препятствий или могут дать непредсказуемый результат. Логичность и формализованность компьютерных моделей позволяет выявить основные факторы, определяющие свойства изучаемого объекта-оригинала (или целого класса объектов), в частности, исследовать отклик моделируемой физической системы на изменения ее параметров и начальных условий.

Построение компьютерной модели базируется на абстрагировании от конкретной природы явлений или изучаемого объекта-оригинала и состоит из двух этапов - сначала создание качественной, а затем и количественной модели. Компьютерное же моделирование заключается в проведении серии вычислительных экспериментов на компьютере, целью которых является анализ, интерпретация и сопоставление результатов моделирования с реальным поведением изучаемого объекта и, при необходимости, последующее уточнение модели и т. д.

К основным этапам компьютерного моделирования относятся:

постановка задачи, определение объекта моделирования;

разработка концептуальной модели, выявление основных элементов системы и элементарных актов взаимодействия;

формализация, то есть переход к математической модели; создание алгоритма и написание программы;

планирование и проведение компьютерных экспериментов;

анализ и интерпретация результатов.

Различают аналитическое и имитационное моделирование. При аналитическом моделировании изучаются математические (абстрактные) модели реального объекта в виде алгебраических, дифференциальных и других уравнений, а также предусматривающих осуществление однозначной вычислительной процедуры, приводящей к их точному решению. При имитационном моделировании исследуются математические модели в виде алгоритмов, воспроизводящего функционирование исследуемой системы путем последовательного выполнения большого количества элементарных операций.

Компьютерное моделирование применяют для широкого круга задач, таких как:

анализ распространения загрязняющих веществ в атмосфере

проектирование шумовых барьеров для борьбы с шумовым загрязнением

конструирование транспортных средств

полетные имитаторы для тренировки пилотов

прогнозирование погоды

эмуляция работы других электронных устройств

прогнозирование цен на финансовых рынках

исследование поведения зданий, конструкций и деталей под механической нагрузкой

прогнозирование прочности конструкций и механизмов их разрушения

проектирование производственных процессов, например химических

стратегическое управление организацией

исследование поведения гидравлических систем: нефтепроводов, водопровода

моделирование роботов и автоматических манипуляторов

моделирование сценарных вариантов развития городов

моделирование транспортных систем

имитация краш-тестов

Различные сферы применения компьютерных моделей предъявляют разные требования к надежности получаемых с их помощью результатов. Для моделирования зданий и деталей самолетов требуется высокая точность и степень достоверности, тогда как модели эволюции городов и социально-экономических систем используются для получения приближенных или качественных результатов

1. Метод конечных элементов и метод конечных разностей

Метод конечных элементов является численным методом решения дифференциальных уравнений, встречающихся в физике и технике.

Основная идея метода конечных элементов состоит в том, что любую непрерывную величину, такую, как температура, давление и перемещение, можно аппроксимировать дискретной моделью, которая строится на множестве кусочно-непрерывных функций определенных на конечном числе подобластей. Кусочно-непрерывные функции определяются с помощью значений непрерывной величины в конечном числе точек рассматриваемой области. В общем случае непрерывная величина заранее неизвестна и нужно определить значения этой величины в некоторых внутренних точках области. Дискретную модель, однако, очень легко «построить, если сначала предположить, что числовые значения этой величины в каждой внутренней точке области известны. После этого можно перейти к общему случаю. Итак, при построении дискретной модели непрерывной величины поступают следующим образом:

В рассматриваемой области фиксируется конечное число точек. Эти точки называются узловыми точками или просто узлами.

Значение непрерывной величины в каждой узловой точке считается переменной, которая должна быть определена. Область определения непрерывной величины разбивается на конечное число подобластей, называемых элементами. Эти элементы имеют общие узловые точки и в совокупности аппроксимируют форму области. Непрерывная величина аппроксимируется на каждом элементе полиномом, который определяется с помощью узловых значений этой величины. Для каждого элемента определяется свой полином, но полиномы подбираются таким образом, чтобы сохранялась непрерывность величины вдоль границ элемента.


Основная концепция метода конечных элементов может быть наглядно проиллюстрирована на одномерном примере заданного распределения температуры в стержне, показанном на рис. 1.1. Рассматривается непрерывная величина Т(х), область определения-отрезок- OL вдоль оси х. Фиксированы и пронумерованы пять точек на оси х (рис. 1.2 а). Это узловые точки; совсем не обязательно располагать их на равном расстоянии друг от друга. Очевидно, можно ввести в рассмотрение более пяти точек, но этих пяти вполне достаточно, чтобы проиллюстрировать основную идею метода. Значения Т(x) В данном случае известны в каждой узловой точке. Эти фиксированные значения представлены графически на рис. 1.2 б и обозначены. В соответствии с номерами узловых точек через T1 + T2 + … + T5 Разбиение области на элементы может быть проведено двумя различными способами. Можно, например, ограничить каждый элемент двумя соседними узловыми точками, образовав четыре элемента (рис. 1.4 а), или разбить область на два элемента, каждый из которых содержат три узла (рис. 1.3 6). Соответствующий элементу полном определяется по значениям Т(x) в узловых точках элемента. В случае разбиения области на четыре элемента, когда на каждый элемент приходится по два узла, функция элемента будет линейна по х (две точки однозначно определяют прямую лилию). Окончательная аппроксимация Т(x) будет состоять из четырех кусочно-линейных функций, каждая из которых определена на отдельном элементе (рис. 1.4 с). Другой способ разбиения области на два элемента с тремя узловыми точками приводит к представлению функции элемента в виде полинома второй степени. В этом случае окончательной аппроксимацией Т(х) будет совокупность двух кусочно-непрерывных квадратичных функций. Отметим, что это приближение будет именно кусочно-непрерывным, так как углы наклона графиков обеих этих функций могут иметь разные значения в третьем узле.

В общем случае распределение температуры неизвестно и мы хотим определить значения этой величины в некоторых точках. Методика построения дискретной модели остается точно такой же, как описано выше, но с добавлением одного дополнительного шага. Снова определяются множество узлов и значения температуры в этих узлах Т1,Т2,Т3 …, которые теперь являются переменными так как они заранее неизвестны. Область разбивается на элементы, на каждом из которых определяется соответствующая функция элемента. Узловые значения Т(х) должны быть теперь «отрегулированы» таким образом, чтобы обеспечивалось «наилучшее» приближение к истинному распределению температуры. Это «регулирование» осуществляется путем минимизации некоторой величины, связанной с физической сущностью задачи. Если рассматривается задача распространения тепла, то минимизируется функционал, связанный с соответствующим дифференциальным уравнением. Процесс минимизации сводится к решению систем линейных алгебраических уравнений относительно узловых значений Т(х).



При построении дискретной модели непрерывной величины, определенной в двух или трехмерной области, основная концепция метода конечных элементов используется аналогично. В двумерном случае элементы описываются функциями от х, у, при этом чаще всего рассматриваются элементы в форме треугольника или четырехугольника. Функции элементов изображаются теперь плоскими (рис. 1.5) или Криволинейными (рис. 1.6) поверхностями. Функция элемента будет представляться плоскостью, если для данного элемента взято минимальное число узловых точек, которое для треугольного элемента равняется трем, а для четырехугольного - четырем.

Если используемое число узлов больше минимального то - функция элемента будет соответствовать криволинейная поверхность. Кроме того, избыточное число узлов позволяет рассматривать элементы с криволинейными границами. Окончательной аппроксимацией двумерной непрерывной величины будет служить совокупность кусочно-непрерывных поверхностей, каждая из которых определяется на отдельном элементе с помощью значений в соответствующих узловых точках. Важным аспектом метода конечных элементов является возможность выделить из набора элементов типичный элемент при определении функции элемента. Это позволяет определять функцию элемента независимо от относительного положения элемента в общей связной модели и от других функций элементов. Задание функции элемента через произвольное множество узловых значений и координат позволяет использовать функции элемента для аппроксимации геометрии области.



Преимущества и недостатки

В настоящее время область применения метода конечных элементов очень обширна и охватывает все физические задачи, которые могут быть описаны дифференциальными уравнениями. Наиболее важными преимуществами метода конечных элементов, благодаря которым он широко используется, являются следующие:

Свойства материалов смежных элементов не должны быть обязательно одинаковыми. Это позволяет применять метод к телам, составленным из нескольких материалов.

Криволинейная область может быть аппроксимирована с помощью прямолинейных элементов или описана точно с помощью криволинейных элементов. Таким образом, методом можно пользоваться не только для областей с «хорошей» формой границы.

Размеры элементов могут быть переменными. Это позволяет укрупнить или измельчить сеть разбиения области на элементы, если в этом есть необходимость.

С помощью метода конечных элементов не представляет труда рассмотрение граничных условий с разрывной поверхностной нагрузкой, а также смешанных граничных условий.

Указанные выше преимущества метода конечных элементов могут быть использованы при составлении достаточно общей программы для решения частных задач определенного класса. Например, с помощью программы для асимметрической задачи о распространении тепла можно решать любую частную задачу этого типа. Факторами, препятствующими расширению круга задач, решаемых методом конечных элементов, являются ограниченность машинной памяти и высокая стоимость вычислительных работ.

Главный недостаток метода конечных элементов заключается в необходимости составления вычислительных программ и применения вычислительной техники. Вычисления, которые требуется проводить при использовании метода конечных элементов, слишком громоздки для ручного счета даже в случае решения очень простых задач. Для решения сложных задач необходимо использовать быстродействующую ЭВМ, обладающую большой памятью.настоящее время имеются технологические возможности для создания достаточно мощных ЭВМ.

Метод конечных разностей является старейшим методом решения краевых задач.

Применение метода конечных разностей позволяет свести дифференциальную краевую задачу к системе нелинейных в общем случае алгебраических уравнений относительно неизвестных узловых значений функций.

Основная идея метода конечных разностей (метода сеток) для приближенного численного решения краевой задачи для двумерного дифференциального уравнения в частных производных состоит в том, что

) на плоскости в области А, в которой ищется решение, строится сеточная область As (рис.1.7), состоящая из одинаковых ячеек размером s (s - шаг сетки) и являющаяся приближением данной области А;

) заданное дифференциальное уравнение в частных производных заменяется в узлах сетки As соответствующим конечно-разностным уравнением;

) с учетом граничных условий устанавливаются значения искомого решения в граничных узлах области Аs.

Рис. 1.7. Построение сеточной области

Решая полученную систему конечно-разностных алгебраических уравнений, получим значения искомой функции в узлах сетки Аs, т.е. приближенное численное решение краевой задачи. Выбор сеточной области Аs зависит от конкретной задачи, но всегда надо стремиться к тому, чтобы контур сеточной области Аs наилучшим образом аппроксимировал контур области А.

Рассмотрим уравнение Лапласа

(1)

где p (x, y) - искомая функция, x, y - прямоугольные координаты плоской области и получим соответствующее ему конечно-разностное уравнение.

Заменим частные производные и в уравнении (1) конечно-разностными отношениями:

(2)

(3)

Тогда решая уравнение (1) относительно , получим:

Задав значения функции в граничных узлах контура сеточной области Аs в соответствии с граничными условиями и решая полученную систему уравнений (4) для каждого узла сетки, получим численное решение краевой задачи (1) в заданной области А.

Ясно, что число уравнений вида (4) равно количеству узлов сеточной области Аs, и чем больше узлов (т.е. чем мельче сетка), тем меньше погрешность вычислений. Однако надо помнить, что с уменьшением шага s возрастает размерность системы уравнений и следовательно, время решения. Поэтому сначала рекомендуется выполнить пробные вычисления с достаточно крупным шагом s , оценить полученную погрешность вычислений, и лишь затем перейти к более мелкой сетке во всей области или в какой-то ее части.

Сравнение метода конечных разностей и метода конечных элементов

Оба метода относятся к классу сеточных методов приближенного решения краевых задач. С точки зрения теоритических оценок точности методы обладают примерно равными возможностями. В зависимости от формы области, краевых условий, коэффициентов исходного уравнения оба метода имеют погрешности аппроксимации от первого до четвертого порядка относительно шага. В силе этого они успешно используются для разработки программных комплексов автоматизированного проектирования технических объектов.

Методы конечных элементов и конечных разностей имеют ряд существенных отличий. Прежде всего, методы различны в том, что в методе конечных разностей аппроксимируется производные искомых функций, а метод конечных элементов - само решение, т.е. зависимость искомых функций от пространственных координат и времени. Методы сильно отличаются и в способе построения сеток. В методе конечных разностей строятся, как правило, регулярные сетки, особенности геометрии области учитываются только в около граничных узлах. В связи с этим метод конечных разностей чаще применяется для анализа задач с прямолинейными границами областей определения функций. К числу традиционных задач, решаемых на основе метода конечных разностей, относятся исследования течений жидкостей и газов в трубах, каналах с учетом теплообменных процессов и ряд других. В методе конечных элементов разбиение на элементы производится с учетом геометрических особенностей области, процесс разбиения начинается от границы с целью наилучшей аппроксимации её геометрии. Затем разбивают на элементы внутренние области, причем алгоритм разбиения строится так чтобы элементы удовлетворяли некоторым ограничениям, например стороны треугольников не слишком отличались по длине и т.д. Поэтому метод конечных элементов наиболее часто используется для решения задач с произвольной областью определения функций, таких, как расчет на прочность деталей и узлов строительных конструкций, авиационных и космических аппаратов, тепловой расчет двигателей и т.д.

Метод конечных объёмов

алгоритм программа моделирование

Отправной точкой метода конечных объёмов (МКО) является интегральная формулировка законов сохранения массы, импульса, энергии и др. Балансовые соотношения записываются для небольшого контрольного объема; их дискретный аналог получается суммированием по всем граням выделенного объема потоков массы, импульса и т.д., вычисленных по каким - либо квадратурным формулам. Поскольку интегральная формулировка законов сохранения не накладывает ограничений на форму контрольного объема, МКО пригоден для дискретизации уравнений гидрогазодинамики как на структурированных, так и на неструктурированных сетках с различной формой ячеек, что, в принципе, полностью решает проблему сложной геометрии расчетной области.

Следует заметить, однако, что использование неструктурированных сеток является довольно сложным в алгоритмическом отношении, трудоемким при реализации и ресурсоемким при проведении расчетов, в особенности при решении трехмерных задач. Это связано как с многообразием возможных форм ячеек расчетной сетки, так и с необходимостью применения более сложных методов для решения системы алгебраических уравнений, не имеющей определенной структуры. Практика последних лет показывает, что развитые разработки вычислительных средств, базирующихся на использовании неструктурированных сеток, по силам лишь достаточно крупным компаниям, имеющим соответствующие людские и финансовые ресурсы. Гораздо более экономичным оказывается использование блочно-структурированных сеток, предполагающее разбиение области течения на несколько подобластей (блоков) относительно простой формы, в каждой из которых строится своя расчетная сетка. В целом такая составная сетка не является структурированной, однако внутри каждого блока сохраняется обычная индексная нумерация узлов, что позволяет использовать эффективные алгоритмы, разработанные для структурированных сеток. Фактически, для перехода от одноблочной сетки к многоблочной необходимо лишь организовать стыковку блоков, т.е. обмен данными между соприкасающимися подобластями для учета их взаимного влияния. Заметим также, что разбиение задачи на отдельные относительно независимые блоки естественным образом вписывается в концепцию параллельных вычислений на кластерных системах с обработкой отдельных блоков на разных процессорах (компьютерах). Все это делает использование блочно-структурированных сеток в сочетании с МКО сравнительно простым, но чрезвычайно эффективным средством расширения геометрии решаемых задач, что исключительно важно для небольших университетских групп, разрабатывающих собственные программы в области гидрогазодинамики.

Отмеченные выше достоинства МКО послужили основанием к тому, что в начале 1990-х гг. именно этот подход с ориентацией на использование блочно-структурированных сеток был выбран авторами в качестве основы для разработки собственного пакета программ широкого профиля для задач гидрогазодинамики и конвективного теплообмена.

Математическое описание:

где: - изменение некоторой физической величины

Конвективное слагаемое в абстрактном законе сохранения физической величины

Диффузное слагаемое в абстрактном законе сохранения физической величины

Источниковое слагаемое в абстрактном законе сохранения физической величины

Метод подвижных клеточных автоматов

Метод подвижных клеточных автоматов (MCA, от англ. movable cellular automata) - это метод вычислительной механики деформируемого твердого тела, основанный на дискретном подходе. Он объединяет преимущества метода классических клеточных автоматов и метода дискретных элементов. Важным преимуществом метода клеточных автоматов является возможность моделирования разрушения материала, включая генерацию повреждений, распространение трещин, фрагментацию и перемешивание вещества. Моделирование именно этих процессов вызывает наибольшие трудности в методах механики сплошных сред (метод конечных элементов, метод конечных разностей и др.), что является причиной разработки новых концепций, например, таких как перидинамика. Известно, что метод дискретных элементов весьма эффективно описывает поведение гранулированных сред. Особенности расчета сил взаимодействия между подвижными клеточными автоматами позволяют описывать в рамках единого подхода поведение как гранулированных, так и сплошных сред. Так, при стремлении характерного размера автомата к нулю формализм метода клеточных автоматов позволяет перейти к классическим соотношениям механики сплошной среды.

В рамках метода клеточных автоматов объект моделирования описывается как набор взаимодействующих элементов/автоматов. Динамика множества автоматов определяется силами их взаимодействия и правилами для изменения их состояния. Эволюция этой системы в пространстве и во времени определяется уравнениями движения. Силы взаимодействия и правила для связанных элементов определяются функциями отклика автомата. Эти функции задаются для каждого автомата. В течение движения автомата следующие новые параметры клеточного автомата рассчитываются: - радиус-вектор автомата; - скорость автомата;

Угловая скорость автомата;

Вектор поворота автомата; - масса автомата; - момент инерции автомата.

Ввод нового типа состояния требует нового параметра используемого в качестве критерия переключения в состояние связанные. Это определяется как параметр перекрытия автоматов hij.

И так, связь клеточных автоматов характеризуется величиной их перекрытия.

Рис 3.1 Начальная структура формируется установкой свойств особой связи между каждой парой соседних элементов.

По сравнению с методом классических клеточных автоматами в методе MCA не только единичный автомат но и также связи автоматов могут переключаться. В соответствии с концепцией бистабильных автоматов вводится два состояния пары (взаимосвязь):


Итак, изменение состояния связи пары определяется относительным движением автоматов, и среда формируемая такими парами может быть названа бистабильной средой.

Уравнения движения клеточных автоматов

Эволюция клеточных автоматов среды описывается следующими уравнениями трансляционного движения:

(6)

Рис 3.2 Учет сил, действующих между автоматами ij со стороны их соседей.

Здесь mi это масса автомата i, pij это центральная сила действующая между автоматами i и j, C(ij, ik) это особый коэффициент ассоциированный с переносом параметра h из пары ij к ik, ψ(αij, ik) это угол между направлениями ij и ik.

Вращательные движения также могут быть учтены с точностью ограниченной размером клеточного автомата. Уравнения вращательного движения могут быть записаны следующим образом:

Здесь Θij угол относительного поворота (это параметр переключения подобно hij трансляционного движения), qij(ji) это расстояние от центра автомата i(j) до точки контакта с автоматом j(i) (угловой момент), τij это парное тангенциальное взаимодействие, S(ij, ik(jl)) это особый коэффициент ассоциированный с параметром переноса Θ от одной пары к другой (это похоже на C(ij, ik(jl)) из уравнений трансляционного движения). Следует отметить, что уравнения полностью аналогичны уравнениям движения для много-частичной среды. Определение деформации пары автоматов

Рис 3.3 Вращение тела как целого не приводит к деформации между автоматами

Смещение пары автоматов Безразмерный параметр деформации для смещения i j пары автоматов записывается как:

(8)

В этом случае:

где Δt временной шаг, Vnij - зависимая скорость. Вращение пары автоматов может быть посчитано аналогично с связью последнего смешения.

Необратимая деформация в методе клеточных автоматов

Параметр εij используется как мера деформации автомата i взаимодействующего с автоматом j. Где qij - расстояние от центра автомата i до точки его контакта с автоматом j; Ri=di/2 (di - размер автомата i).

Например, титановый образец при циклическом нагружении (растяжение-сжатие). Диаграмма деформирования показана на следующем рисунке:

Преимущества метода клеточных автоматов

Благодаря подвижности каждого автомата метод клеточных автоматов позволяет напрямую учитывать такие события как:

перемешивание масс

эффект проникновения

химические реакции

интенсивные деформации

фазовые превращения

накопление повреждений

фрагментация и трещины

генерация и развитие повреждений

Используя различные граничные условия разных типов (жесткие, упругие, вязко-упругие, т.д.) можно имитировать различные свойства окружающей среды, содержащей моделируемую систему. Можно моделировать различные режимы механического нагружения (растяжение, сжатие, сдвиг, т.д.) с помощью настроек дополнительных состояний на границах.

Метод молекулярной динамики

Метод молекулярной динамики (метод МД) - метод, в котором временная эволюция системы взаимодействующих атомов или частиц отслеживается интегрированием их уравнений движения

Метод классической (полноатомной) молекулярной динамики позволяет с использованием современных ЭВМ рассматривать системы, состоящие из нескольких миллионов атомов на временах порядка нескольких пикосекунд. Применение других подходов (тяжело-атомные, крупно-зернистые модели) позволяет увеличить шаг интегрирования и тем самым увеличить доступное для наблюдения время до порядка микросекунд. Для решения таких задач все чаще требуются большие вычислительные мощности, которыми обладают суперкомпьютеры.

Основные положения метода

Для описания движения атомов или частиц применяется классическая механика. Закон движения частиц находят при помощи аналитической механики.

Силы межатомного взаимодействия можно представить в форме классических потенциальных сил (как градиент потенциальной энергии системы).

Точное знание траекторий движения частиц системы на больших промежутках времени не является необходимым для получения результатов макроскопического (термодинамического) характера.

Наборы конфигураций, получаемые в ходе расчетов методом молекулярной динамики, распределены в соответствии с некоторой статистической функцией распределения, например отвечающей микроканоническому распределению.

Ограничения применимости метода

Метод молекулярной динамики применим, если длина волны Де Бройля атома (или частицы) много меньше, чем межатомное расстояние.

Также классическая молекулярная динамика не применима для моделирования систем, состоящих из легких атомов, таких как гелий или водород. Кроме того, при низких температурах квантовые эффекты становятся определяющими и для рассмотрения таких систем необходимо использовать квантовохимические методы. Необходимо, чтобы времена на которых рассматривается поведение системы были больше, чем время релаксации исследуемых физических величин.

Применение

Метод молекулярной динамики, изначально разработанный в теоретической физике, получил большое распространение в химии и, начиная с 1970х годов, в биохимии и биофизике. Он играет важную роль в определении структуры белка и уточнении его свойств (см. также кристаллография, ЯМР). Взаимодействие между объектами может быть описано силовым полем (классическая молекулярная динамика), квантовохимической моделью или смешанной теорией, содержащей элементы двух предыдущих (QM/MM (quantum mechanics/molecular mechanics, QMMM (англ.)).

Наиболее популярными пакетами программного обеспечения для моделирования динамики биологических молекул являются: AMBER, CHARMM (и коммерческая версия CHARMm), GROMACS, GROMOS,Lammps и NAMD.

Метод дискретного элемента

Метод дискретного элемента (DEM, от англ. Discrete element method) - это семейство численных методов предназначенных для расчёта движения большого количества частиц, таких как молекулы, песчинки, гравий, галька и прочих гранулированных сред. Метод был первоначально применён Cundall в 1971 для решения задач механики горных пород. Williams, Hocking и Mustoe детализировали теоретические основа метода. В 1985 они показали, что DEM может быть рассмотрен как обобщение метода конечных элементов (МКЭ, FEM). В книге Numerical Modeling in Rock Mechanics, by Pande, G., Beer, G. and Williams, J.R. описано применение этого метода для решения геомеханических задач. Теоретические основы метода и возможности его применения неоднократно рассматривалось на 1-й, 2-й и 3-й Международной Конференции по Методам Дискретного Элемента. Williams, и Bicanic (см. ниже) опубликовали ряд журнальных статей описывающих современные тенденции в области DEM. В книге The Combined Finite-Discrete Element Method, Munjiza детально описано комбинирование Метода Конечного Элемента и Метода Дискретного Элемента.

Этот метод иногда называют молекулярной динамикой (MD), даже когда частицы не являются молекулами. Однако, в противоположность молекулярной динамике, этот метод может быть использован для моделирования частиц с не сферичной поверхностью. Методы дискретного элемента очень требовательны к вычислительным ресурсам ЭВМ. Это ограничивает размер модели или количество используемых частиц. Прогресс в области вычислительной техники позволяет частично снять это ограничение за счет использования параллельной обработки данных. Альтернативой обработки всех частиц отдельно является обработка данных как сплошной среды. Например, если гранульный поток подобен газу или жидкости, можно использовать вычислительную гидродинамику.

Основные принципы метода

Моделирование МДЭ начинается c помещения всех частиц в конкретное положение и придания им начальной скорости. Затем силы, воздействующие на каждую частицу, рассчитываются, исходя из начальных данных и соответствующих физических законов.

Следующие силы могут иметь влияние в макроскопических моделях:

трение, когда две частицы касаются друг друга;

отскакивание, когда две частицы сталкиваются;

гравитация (сила притяжения между частицами из-за их массы), которая имеет отношение только при астрономическом моделировании;

На молекулярном уровне, мы можем рассматривать Силу Кулона, электростатическое притяжение или отталкивание частиц, несущих электрический заряд;

Отталкивание Паули, когда два атома находятся вблизи друг от друга;

Силу Ван дер Ваальса.

Все эти силы складываются, чтобы найти результирующую силу, воздействующую на каждую частицу. Чтобы рассчитать изменение в положении и скорости каждой частицы в течение определенного временного шага из законов Ньютона, используется метод интеграции. После этого новое положение используется для расчёта сил в течение следующего шага, и этот цикл программы повторяется до тех пор, пока моделирование не закончится.

Типичные методы интеграции используемые в методе дискретного элемента:

алгоритм Верлета,

скорость Верлета,

метод прыжка.

Дальнодействующие силы

Когда во внимание принимаются дальнодействующие силы (гравитация, сила Кулона), взаимодействия каждой пары частиц необходимо рассчитывать. Число взаимодействий, а следовательно, ресурсоёмкость расчёта, возрастает с увеличением количества частиц квадратично, что не приемлемо для моделей с большим числом частиц. Возможный путь решить эту проблему - объединить некоторые частицы, которые находятся на расстоянии от рассматриваемой частицы, в одну псевдочастицу. Рассмотрим, например, взаимодействие между звездой и отдаленной галактикой: ошибка, возникающая из-за объединения массы всех звезд в удалённой галактике в одну точку, незначительна. Для того, чтобы определить, какие частицы могут быть объединены в одну псевдочастицу, используются так называемые древесные алгоритмы. Эти алгоритмы распределяют все частицы в виде дерева, квадрадерева в случае двухмерной модели и октадерева в случае трехмерной модели.

Модели в молекулярной динамике делят пространство, в котором происходит моделируемый процесс, на ячейки. Частицы, уходящие через одну сторону ячейки просто вставляются с другой стороны (периодические граничные условия); так же происходит и с силами. Силы перестают приниматься в расчёт после так называемой дистанции отсечения (обычно половина длины ячейки), так что на частицу не воздействует зеркальное расположение той же частицы на другой стороне ячейки. Таким образом, можно увеличивать количество частиц простым копированием ячеек.

Применение

Фундаментальным предположением метода является то, что материал состоит из отдельных, дискретных частиц. Эти частицы могут иметь различные поверхности и свойства. Примеры:

жидкости и растворы, например сахар или белок;

сыпучие вещества в элеваторе, такие как крупа;

гранулированный материал, такой как песок;

порошки, такие как тонер.

Типичные отрасли промышленности использующие DEM:

Горнодобывающая

Фармацевтическая

Нефтегазовая

Сельскохозяйственная

Химическая

Метод компонентных цепей

Метод компонентных цепей - это метод, предназначенный для моделирования физически неоднородных устройств и систем, исходная информация о которых задана в виде модели структуры. Основной структурной сущностью метода компонентных цепей является многополюсный компонент с произвольным числом связей, которым инцидентны переменные связей.

Математическая модель компонента - это уравнение либо система уравнений (линейных, нелинейных, обыкновенных дифференциальных 1-го порядка) относительно его переменных связей и внутренних переменных. Совокупность компонентов, связи которых, именуемые ветвями компонентных цепей, объединены в общих точках, именуемых узлами, определяется как компонентная цепь Ск = {К, S, N}, где К - множество компонентов; S - множество связей компонентов из К; N - множество узлов цепи.

В соответствии с типом переменных, действующих на связи, определены два основных типа связей:

связи энергетического типа S%, которым соответствует пара топологических координат и пара дуальных переменных , где nk - номер узла k-й связи; bk - номер ветви, nk - знак, задающий ориентацию связи, , - переменные связи потенциального и потокового типа;

связи информационного типа S"k, которым соответствует одна топологическая координата и одна переменная связи, имеющая произвольный физический смысл .

Принципиальное отличие переменных потенциального и потокового типа состоит в том, что для последних при формировании математической модели компонентных цепей в нее автоматически включаются уравнения узловых топологических законов сохранения. Таким образом, математическая модель компонентных цепей имеет вид

(11)

где - совокупность уравнений моделей компонентов, входящих в компонентные цепи; - уравнения базового узла; - уравнения узловых топологических законов сохранения для переменных потокового типа, записанные для всех узлов за исключением базового; - множество связей энергетического типа.

Согласно числу переменных, действующих на связях, выделяются связи скалярного и векторного типа. На связи скалярного типа могут действовать лишь по одной потенциальной и потоковой переменной, т.е. по одной разнотипной переменной. К скалярным связям относятся связи энергетического и информационного типов. Связи векторного типа может быть инцидентно более двух переменных одного типа. Связи векторного типа являются объединением скалярных. Методом компонентных цепей предусматривается автоматическое формирование моделей компонентных цепей во временной и в частотной (для линейных непрерывных схем) областях. При моделировании во временной области

где - комплексная частота, а мнимые составляющие реализуются посредством внутренних переменных. В результате алгебраизации и линеаризации дифференциальных и нелинейных уравнений модель компонентных цепей принимает вид системы линейных алгебраических уравнений относительно переменных связей компонентных цепей и вспомогательных переменных:

где Ф - квадратная матрица коэффициентов; W - вектор-столбец правых частей; V - вектор-столбец решения компонентных цепей, включающий векторы потенциальных, потоковых и внутренних переменных компонентных цепей.

7. Метод узловых потенциалов

Метод узловых потенциалов - метод расчета электрических цепей путём записи системы линейных алгебраических уравнений, в которой неизвестными являются потенциалы в узлах цепи. В результате применения метода определяются потенциалы во всех узлах цепи, а также, при необходимости, токи во всех ветвях.

Очень часто необходимым этапом при решении самых разных задач электроники является расчет электрической цепи. Под этим термином понимается процесс получения полной информации о напряжениях во всех узлах и о токах во всех ветвях заданной электрической цепи. Для расчета линейной цепи достаточно записать необходимое число уравнений, которые базируются на правилах Кирхгофа и законе Ома, а затем решить полученную систему.

Однако на практике записать систему уравнений просто из вида схемы удается только для очень простых схем. Если в схеме более десятка элементов или она содержит участки типа мостов, то для записи системы уравнений уже требуются специальные методики. К таким методикам относятся метод узловых потенциалов и метод контурных токов.

Метод узловых потенциалов не привносит ничего нового к правилам Кирхгофа и закону Ома. Данный метод лишь формализует их использование настолько, чтобы их можно было применить к любой, сколь угодно сложной цепи. Иными словами, метод даёт ответ на вопрос «как использовать законы для расчета данной цепи?».

Если в цепи, состоящей из У узлов и Р рёбер известны все характеристики звеньев (полные сопротивления R, величины источников ЭДС E и тока J), то возможно вычислить токи Ii во всех рёбрах и потенциалы φi во всех узлах. Поскольку электрический потенциал определён с точностью до произвольного постоянного слагаемого, то потенциал в одном из узлов (назовём его базовым узлом) можно принять равным нулю, а потенциалы в остальных узлах определять относительно базового узла. Таким образом, при расчёте цепи имеем У+Р-1 неизвестных переменных: У-1 узловых потенциалов и Р токов в рёбрах.

Не все из указанных переменных независимы. Например, исходя из закона Ома для участка цепи, токи в звеньях полностью определяются потенциалами в узлах:

(12)

С другой стороны, токи в рёбрах однозначно определяют распределение потенциала в узлах относительно базового узла:

Таким образом, минимальное число независимых переменных в уравнениях цепи равно либо числу звеньев, либо числу узлов минус 1, в зависимости от того, какое из этих чисел меньше.

При расчёте цепей чаще всего используются уравнения, записываемые исходя из законов Кирхгофа. Система состоит из У-1 уравнений по 1-му закону Кирхгофа (для всех узлов, кроме базового) и К уравнений по 2-му закону Кирхгофа для каждого независимого контура. Независимыми переменными в уравнениях Кирхгофа являются токи звеньев. Поскольку согласно формуле Эйлера для плоского графа число узлов, рёбер и независимых контуров связаны соотношением или то число уравнений Кирхгофа равно числу переменных, и система разрешима. Однако число уравнений в системе Кирхгофа избыточно. Одним из методов сокращения числа уравнений является метод узловых потенциалов. Переменными в системе уравнений являются У-1 узловых потенциалов. Уравнения записываются для всех узлов, кроме базового. Уравнения для контуров в системе отсутствуют.

Перед началом расчёта выбирается один из узлов (базовый узел), потенциал которого считается равным нулю. Затем узлы нумеруются, после чего составляется система уравнений.

Уравнения составляются для каждого узла, кроме базового. Слева от знака равенства записывается:

потенциал рассматриваемого узла, умноженный на сумму проводимостей ветвей, примыкающих к нему;

минус потенциалы узлов, примыкающих к данному, умноженные на проводимости ветвей, соединяющих их с данным узлом.

Справа от знака равенства записывается:

сумма всех источников токов, примыкающих к данному узлу;

сумма произведений всех ЭДС, примыкающих к данному узлу, на проводимость соответствующего звена.

Если источник направлен в сторону рассматриваемого узла, то он записывается со знаком «+», в противном случае - со знаком «−».

Метод переменных состояния

Метод переменных состояния (называемый иначе методом пространственных состояния) представляет собой упорядоченный способ нахождения состояния системы в функции времени, использующий матричный метод решения системы дифференциальных уравнений первого порядка, записанных в форме Коши (в нормальной форме). Применительно к электрическим цепям под переменными состояниями понимают величины, определяющие энергетическое состояние цепи, т.е. токи через индуктивные элементы и напряжения на конденсаторах. Значения этих величин полагаем известными к началу процесса. Переменные состояния в обобщенном смысле назовем х. Так как это некоторые функции времени, то их можно обозначить x(t).

Метод переменных состояния основывается на двух уравнениях, записываемых в матричной форме.

Структура первого уравнения определяется тем, что оно связывает матрицу первых производных по времени переменных состояния x¢(t) с матрицами самих переменных состояний x и внешних воздействий u, в качестве которых рассматриваются ЭДС и токи источников.

Второе уравнение по своей структуре является алгебраическим и связывает матрицу выходных величин y с матрицами переменных состояния x и внешних воздействий u.

Определяя переменные состояния, отметим следующие их свойства:

В качестве переменных состояния в электрических цепях следует выбрать токи в индуктивностях и напряжения на емкостях, причем не во всех индуктивностях и не на всех емкостях, а только для независимых, т.е. таких, которые определяют общий порядок системы дифференциальных уравнений цепи.

Дифференциальные уравнения цепи относительно переменных состояния записываются в канонической форме, т.е. представляются решенными относительно первых производных переменных состояния по времени.

Отметим, что только при выборе в качестве переменных состояния токов в независимых индуктивностях и напряжений на независимых емкостях первое уравнение метода переменных состояния будет иметь указанную выше структуру.

Если в качестве переменных состояния выбрать токи в ветвях с емкостями или токи в ветвях с сопротивлениями, а также напряжения на индуктивностях или напряжения на сопротивлениях, то первое уравнение метода переменных состояния также можно представить в канонической форме, т.е. решенным относительно первых производных по времени этих величин. Однако, структура их правых частей не будет соответствовать данному выше определению, так как в них будет еще входить матрица первых производных от внешних воздействий u¢. Число переменных состояния равно порядку системы дифференциальных уравнений исследуемой электрической цепи. Выбор в качестве переменных состояния токов и напряжений удобен еще и потому, что именно эти величины согласно законам коммутации в момент коммутации не изменяются скачком, т.е. одинаковы для моментов времени t=0+ и t=0-. Переменные состояния и потому так и называются, что в каждый момент времени задают энергетическое состояние электрической цепи, так как последнее определяется суммой выражений и . Представление уравнений в канонической форме очень удобно при их решении на аналоговых вычислительных машинах и для программирования при их решении на цифровых вычислительных машинах. Поэтому такое представление имеет очень важное значение при решении этих уравнений с помощью средств современной вычислительной техники. Пусть в системе n переменных состояния, m выходных величин и р источников воздействия. Тогда матрицу-столбец переменных состояния в n-мерном пространстве состояний, матрицу-столбец выходных величин, матрицу-столбец источников воздействий обозначим соответственно

(14)

Для электрических цепей можно составить матричные уравнения вида:

где [A], [B], [C], [D] - некоторые матрицы, определяемые структурой цепи и значениями ее параметров. Причем [A] - всегда квадратная матрица порядка n.

(15) - система n дифференциальных уравнений первого порядка (в общем случае взаимосвязанных), называемая уравнением переменных состояния в нормальной форме. Вспомогательные переменные х, х...х - переменные состояния, а [x] - вектор переменных состояния.(16) - выходное уравнение.

Преимущества

Решение таких систем широко известно в математике как в численном, так и в аналитическом виде.

Уравнения легко решаются на ЭВМ.

Как правило, число уравнений в системе (15) оказывается меньше, чем число уравнений, составленных МУП.

Метод может быть обобщен для решения нелинейных систем

Заключение

Польза от компьютерного моделирования по сравнению с натурным экспериментом:

это дешевле

это быстрее.

В некоторых процессах, где натурный эксперимент опасен для жизни и здоровья людей, вычислительный эксперимент является единственно возможным (термоядерный синтез, освоение космического пространства, проектирование и исследование химических и других производств).

Для проверки адекватности математической модели и реального объекта, процесса или системы результаты исследований на ЭВМ сравниваются с результатами эксперимента на опытном натурном образце. Результаты проверки используются для корректировки математической модели или решается вопрос о применимости построенной математической модели к проектированию либо исследованию заданных объектов, процессов или систем. В задачах проектирования или исследования поведения реальных объектов, процессов или систем чаще всего используются математические модели типа ДНА (детерминированная, непрерывная, аналитическая). Методы решения математических задач можно разделить на 2 группы:

точные методы решения задач (ответ получается в виде формул);

численные методы решения задач (формулы нет, но можно построить много арифметических операций, которые приведут к решению).

Численные методы разрабатываются вычислительной математикой и особенно актуальны при применении ЭВМ. Ни те, ни другие методы обычно не дают точного решения, однако это не значит, что разум бессилен а, это всего лишь означает, что надо установить требуемую степень точности и решать проблему с заданной точностью.

Литература

1. Сегерлинд Л. «Применение метода конечных элементов» Перевод с английского Шестакова А.А. Москва 1979

Http://ru.wikipedia.org/wiki/Метод_классической_молекулярной_динамики

Е.М. Смирнов, Д.К. Зайцев «Метод конечных объемов в приложении к задачам гидрогазодинамики и теплообмена в областях сложной геометрии» Научно технические ведомости 2’ 2004

Http://ru.wikipedia.org/wiki/Метод_подвижных_клеточных_автоматов

ФГОУ ВПО «Вологодская государственная молочнохозяйственная

академия имени Н.В. Верещагина»

Кафедра философии

«Модель и метод моделирования в научном исследовании»

Вологда - Молочное 2011 г

Введение

1.Понятие модель

2.Классификация моделей и виды моделирования

.Цели моделирования

.Основные функции моделирования

4.1Моделирование как средство экспериментального исследования

4.2Моделирование и проблема истины

5.Место моделей в структуре эксперимента, модельный эксперимент

Заключение

Список использованных источников

Введение

С процессом моделирования и различными моделями человек начинает сталкиваться с самого раннего детства. Так, еще не научившись уверенно ходить, малыш начинает играть с кубиками, сооружая из них различные конструкции (точнее, модели). Его окружают разнообразные игрушки, при этом большинство из них в большей или меньшей степени воспроизводят (моделируют) отдельные свойства и форму реально существующих предметов и объектов. В этом смысле такие игрушки также можно рассматривать в качестве моделей соответствующих объектов.

В школе практически все обучение построено на использовании моделей в той или иной форме. Действительно, для знакомства с основными конструкциями и правилами родного языка используются различные структурные схемы и таблицы, которые можно считать моделями, отражающими свойства языка. Процесс написания сочинения следует рассматривать как моделирование некоторого события или явления средствами родного языка. На уроках биологии, физики, химии и анатомии к плакатам и схемам (т.е. моделям) добавляются макеты (тоже модели) изучаемых реальных объектов. На уроках рисования или черчения на листе бумаги либо ватмана создаются модели различных объектов, выраженные изобразительным языком либо более формализованным языком чертежа.

Даже такую трудно формализуемую область знания, как история, также можно считать непрерывной эволюционирующей совокупностью моделей прошлого какого-либо народа, государства и т.д. Устанавливая закономерности в наступлении разных исторических событий (революций, войн, ускорений либо застоев исторического развития), можно не только выяснить причины, приведшие к данным событиям, но и прогнозировать и даже управлять их появлением и развитием в будущем.

Так, моделями можно считать картину, написанную художником, художественное произведение и скульптуру. Даже жизненный опыт человека, его представления о мире является примером модели. Причем поведение человека определяется моделью сформировавшейся в его сознании. Психолог или учитель, изменяя параметры такой внутренней модели, способен в отдельных случаях существенно влиять на поведение человека.

Без преувеличения можно утверждать, что в своей осознанной жизни человек имеет дело исключительно с моделями тех или иных реальных объектов, процессов, явлений. При этом один и тот же объект воспринимается различными людьми по-разному, иногда с точностью до наоборот. Это восприятие, мысленный образ объекта также является разновидностью модели последнего (так называемой когнитивной моделью) и существенным образом зависит от множества факторов: качества и объема знаний, особенностей мышления, эмоционального состояния конкретного человека "здесь и сейчас" и от множества других, зачастую не доступных рациональному осознанию. Особенно велика роль моделей и моделирования в современной науке и технике.

Можно ли обойтись в технике без применения тех или иных видов моделей? Очевидный ответ - нет! Безусловно, что новый самолет можно построить "из головы" (без предварительных расчетов, чертежей, экспериментальных образцов, т.е. используя только единственную идеальную модель, существующую в мыслях конструктора), но едва ли это будет достаточно эффективная и надежная конструкция. Единственное ее достоинство - уникальность. Ведь даже автор не сможет повторно изготовить точно такой же самолет, так как в процессе изготовления первого экземпляра будет получен некоторый опыт, который обязательно изменит идеальную модель в голове самого конструктора.

Чем более сложным и надежным должно быть техническое изделие, тем большее число видов моделей потребуется на этапе его проектирования.

Как правило, сложные изделия создаются целыми коллективами разработчиков. Вся совокупность применяемых ими разнообразных моделей позволяет сформировать общую для всего коллектива идеальную модель разрабатываемого изделия. Реальное техническое изделие можно рассматривать как материальную модель (аналог) созданной авторами идеальной модели.

Повышенный интерес философии и методологии познания к теме моделирования вызван тем значением, которое метод моделирования получил в современной науке, и в особенности в таких ее разделах, как физика, химия, биология, кибернетика, не говоря уже о многих технических науках.

Однако моделирование как специфическое средство и форма научного познания не является изобретением 19 или 20 века. Достаточно указать на представления Демокрита и Эпикура об атомах, их форме и способах соединения, об атомных вихрях и ливнях, объяснения физических свойств различных вещей (и вызываемых ими ощущений) с помощью представления о круглых и гладких или крючковатых частицах, «сцепленных между собой наподобие веток оплетенных» (Лукреций), вспомнить, что знаменитая антитеза геоцентрического и гелиоцентрического мировоззрений опиралась на две принципиально различные модели Вселенной, описанные в «Альмагесте» Птолемея и сочинении Н. Коперника «Об обращениях небесных сфер», чтобы обнаружить весьма старинное происхождение этого метода. Если проследить внимательнейшим образом историческое развитие научных идей и методов, нетрудно заметить, что модели никогда не исчезали из арсенала науки.

1. Понятие модель

Слово "модель" произошло от латинского слова "modelium", означает: мера, способ и т.д. Его первоначальное значение было связано со строительным искусством, и почти во всех европейских языках оно употреблялось для обозначения образа или вещи, сходной в каком-то отношении с другой вещью". По мнению многих авторов , модель использовалась первоначально как изоморфная теория (две теории называются изоморфными, если они обладают структурным подобием по отношению друг к другу).

С другой стороны, в таких науках о природе, как астрономия, механика, физика термин "модель" стал применяться для обозначения того, что она описывает. В.А. Штофф отмечает, что "здесь со словом "модель" связаны два близких, но несколько различных понятия". Под моделью в широком смысле понимают мысленно или практически созданную структуру, воспроизводящую часть действительности в упрощенной и наглядной форме. Таковы, в частности представления Анаксимандра о Земле как плоском цилиндре, вокруг которого вращаются наполненные огнем полые трубки с отверстиями. Модель в этом смысле выступает как некоторая идеализация, упрощение действительности, хотя сам характер и степень упрощения, вносимые моделью, могут со временем меняться. В более узком смысле термин "модель" применяют тогда, когда хотят изобразить некоторую область явлений с помощью другой, более изученной, легче понимаемой. Так, физики 18 века пытались изобразить оптические и электрические явления посредством механических ("планетарная модель атома" - строение атома изображалось как строение солнечной системы). Таким образом, в этих двух случаях под моделью понимается либо конкретный образ изучаемого объекта, в котором отображаются реальные или предполагаемые свойства, либо другой объект, реально существующий наряду с изучаемым и сходный с ним в отношении некоторых определенных свойств или структурных особенностей. В этом смысле модель - не теория, а то, что описывается данной теорией - своеобразный предмет данной теории.

Во многих дискуссиях, посвященных гносеологической роли и методологическому значению моделирования, этот термин употреблялся как синоним познания, теории, гипотезы и т.п. Например, часто модель употребляется как синоним теории в случае, когда теория еще недостаточно разработана, в ней мало дедуктивных шагов, много неясностей. Иногда этот термин употребляют в качестве синонима любой количественной теории, математического описания. Несостоятельность такого употребления с гносеологической точки зрения, по мнению В.А. IIIтоффа, в том, "что такое словоупотребление не вызывает никаких новых гносеологических проблем, которые были бы специфичны для моделей". Существенным признаком, отличающим модель от теории (по словам И.Т. Фролова) является не уровень упрощения, не степень абстракции, и следовательно, не количество этих достигнутых абстракций и отвлечений, а способ выражения этих абстракций, упрощений и отвлечении, характерный для модели.

В философской литературе, посвященной вопросам моделирования, предлагаются различные определения модели. Определение И.Т. Фpолова: «Моделирование означает материальное или мысленное имитирование реально существующей системы путем специального конструирования аналогов (моделей), в которых воспроизводятся принципы организации и функционирования этой системы". Здесь в основе мысль, что модель - средство познания, главный ее признак - отображение. На наш взгляд, наиболее полное определение понятия "модель» дает В.А. IIIтофф в своей книге "Моделирование и философия": "Под моделью понимается такая мысленно представляемая или материально реализуемая система, которая отображая или воспроизводя объект исследования, способна замещать его так, что ее изучение дает нам новую информацию об этом объекте".

При дальнейшем рассмотрении моделей и процесса моделирования будем исходить из того, что общим свойством всех моделей является их способность отображать действительность. В зависимости от того, какими средствами, при каких условиях, по отношению к каким объектам познания это их общее свойство реализуется, возникает большое разнообразие моделей, а вместе с ним и проблема классификации моделей.

2. Классификация моделей и виды моделирования

В литературе, посвященной философским аспектам моделирования, представлены различные классификационные признаки, по которым выделены различные типы моделей. Например, в (2 с23) называются такие признаки, как:

 Способ построения (форма модели);

 Качественная специфика (содержание модели).

По способу построения модели бывают материальные и идеальные. Остановимся на группе материальных моделей. Несмотря на то, что эти модели созданы человеком, но они существуют объективно. Их назначение специфическое - отразить пространственные свойства, динамику изучаемых процессов, зависимости и связи. Материальные модели соединены с объектами отношением аналогии.

Материальные модели неразрывно связаны с воображаемыми (даже, прежде, чем что-либо построить - сначала теоретическое представление, обоснование). Эти модели остаются мысленными даже в том случае, если они воплощены в какой-либо материальной форме. Большинство этих моделей не претендует на материальное воплощение. По форме они могут быть:

 образные, построенные из чувственно наглядных элементов;

 знаковые, в этих моделях элементы отношения и свойства моделируемых явлений выражены при помощи определенных знаков;

 смешанные, сочетающие свойства и образных, и знаковых моделей.

Достоинства данной классификации в том, что она дает хорошую основу для анализа двух основных функций модели:

 практической (в качестве средства научного эксперимента)

 теоретической (в качестве специфического образа действительности, в котором содержатся элементы логического и чувственного, абстрактного и конкретного, общего и единичного).

Другая классификация есть у Б.А. Глинского в его книге "Моделирование как метод научного исследования", где наряду с обычным делением моделей по способу их реализации, они делятся и по характеру воспроизведения сторон оригинала:

 субстанциональные

 структурные

 функциональные

 смешанные

В зависимости от способа мышления исследователя модели, его взгляда на мир, используемой алгебры, модели могут принимать различную форму. Использование различных математических аппаратов впоследствии приводит к различным возможностям в решении задач.

Модели могут быть:

 феноменологические и абстрактные;

 активные и пассивные;

 статические и динамические;

 дискретные и непрерывные;

 детерминированные и стохастические;

 функциональные и объектные.

Феноменологические модели сильно привязаны к конкретному явлению. Изменение ситуации часто приводит к тому, что моделью воспользоваться в новых условиях достаточно сложно. Это происходит оттого, что при составлении модели её не удалось построить с точки зрения подобия внутреннему строению моделируемой системы. Феноменологическая модель передаёт внешнее подобие.

Абстрактная модель воспроизводит систему с точки зрения её внутреннего устройства, копирует её более точно. У неё больше возможностей, шире класс решаемых задач.

Активные модели взаимодействуют с пользователем; могут не только, как пассивные, выдавать ответы на вопросы пользователя, когда тот об этом попросит, но и сами активируют диалог, меняют его линию, имеют собственные цели. Все это происходит за счёт того, что активные модели могут самоизменяться.

Статические модели описывают явления без развития. Динамические модели прослеживают поведение систем, поэтому используют в своей записи, например, дифференциальные уравнения, производные от времени.

Дискретные и непрерывные модели. Дискретные модели изменяют состояние переменных скачком, потому что не имеют детального описания связи причин и следствий, часть процесса скрыта от исследователя.

Непрерывные модели более точны, содержат в себе информацию о деталях перехода.

Детерминированные и стохастические модели. Если следствие точно определено причиной, то модель представляет процесс детерминировано. Если из-за неизученности деталей не удаётся описать точно связь причин и следствий, а возможно только описание в целом, статистически (что часто и бывает для сложных систем), то модель строится с использованием понятия вероятности.

Распределённые, структурные, сосредоточенные модели. Если параметр, описывающий свойство объекта, в любых его точках имеет одинаковое значение (хотя может меняться во времени!), то это система с сосредоточенными параметрами. Если параметр принимает разные значения в разных точках объекта, то говорят, что он распределён, а модель, описывающая объект, распределённая. Иногда модель копирует структуру объекта, но параметры объекта сосредоточенны, тогда модель структурная.

Функциональные и объектные модели. Если описание идёт с точки зрения поведения, то модель построена по функциональному признаку. Если описание каждого объекта отделено от описания другого объекта, если описываются свойства объекта, из которых вытекает его поведение, то модель является объектно-ориентированной.

Каждый подход имеет свои достоинства и недостатки. Разные математические аппараты имеют разные возможности (мощность) для решения задач, разные потребности в вычислительных ресурсах. Один и тот же объект может быть описан различными способами. Инженер должен грамотно применять то или иное представление, исходя из текущих условий и стоящей перед ним проблемы.

Теперь перейдем к рассмотрению вопросов, связанных непосредственно с самим моделированием. "Моделирование  метод исследования объектов познания на их моделях; построение и изучение моделей реально существующих предметов и явлений (органических и неорганических систем, инженерных устройств, разнообразных процессов  физических, химических, биологических, социальных) и конструируемых объектов для определения либо улучшения их характеристик, рационализации способов их построения, управления и т.п." (8 с421). Моделирование может быть:

 предметное (исследование основных геометрических, динамических, функциональных характеристик объекта на модели);

 физическое (воспроизведение физических процессов);

 предметно - математическое (исследование физического процесса путем опытного изучения каких-либо явлений иной физической природы, но описываемых теми же математическими соотношениями, что и моделируемый процесс);

 знаковое (расчетное моделирование, абстрактно - математическое).

3. Цели моделирования

Хорошо построенная модель, как правило, доступнее, информативнее и удобнее для исследователя, нежели реальный объект. Рассмотрим основные цели, преследуемые при моделировании в научной сфере. Самым важным и наиболее распространенным предназначением моделей является их применение при изучении прогнозировании поведения сложных процессов и явлений. Следует учитывать, что некоторые объекты и явления вообще не могут быть изучены непосредственным образом. Недопустимы, например, широко - масштабные натурные эксперименты с экономикой страны или со здоровьем ее населения (хотя и те, и другие с определенной периодичностью ставятся и реализуются). Принципиально неосуществимы эксперименты с прошлым какоголибо государства или народа (История не терпит сослагательного наклонения). Невозможно (по крайней мере, в настоящее время) провести эксперимент по прямому исследованию структуры звезд. Многие эксперименты неосуществимы в силу своей дороговизны или рискованности для человека или среды его обитания. Как правило, в настоящее время все сторонние предварительные исследования различных моделей явления предшествуют проведению любых сложных экспериментов. Более того, эксперименты на моделях с применением компьютера позволяют разработать план натурных экспериментов, выяснить требуемые характеристики измерительной аппаратуры, наметить срок и проведения наблюдений, а также оценить стоимость такого эксперимента. Другое, не менее важное, предназначение моделей состоит в том, что с их помощью выявляются наиболее существенные факторы, формирующие те или иные свойства объекта, поскольку сама модель отражает лишь некоторые основные характеристики исходного объекта, учет которых необходим при исследовании того или иного процесса или явления. Например, исследуя движение массивного тела в атмосфере вблизи поверхности Земли, на основании известных экспериментальных данных и предварительного физического анализа можно выяснить, что ускорение существенно зависит от массы и геометрической формы этого тела (в частности, от величины поперечного к направлению движения сечения объекта), в определенной степени от шероховатости поверхности, но не зависит от цвета поверхности. При рассмотрении движения того же тела верхних слоях атмосферы, где сопротивлением воздуха можно пренебречь, несущественным и становятся и форма, и шероховатость поверхности.

Конечно, модель любого реального процесса или явления "беднее" его самого как объективно существующего (процесса, явления). В то же время хорошая модель "богаче" того, что понимается под реальностью, поскольку в сложных системах понять всю совокупность связей "разом" человек (или группа людей), как правило, не в состоянии. Модель же позволяет "играть" с ней: включать или отключать те или иные связи, менять их для того, чтобы понять важность для поведения системы в целом.

Модель позволяет научиться правильно управлять объектом путем апробирования различных вариантов управления. Использовать для этого реальный объект часто бывает рискованно или просто невозможно. Например, получить первые навыки в управлении современным самолетом безопаснее, быстрее и дешевле на тренажере (т.е. модели), чем подвергать себя и дорогую машину риску.

Если свойства объекта с течением времени меняются, то особое значение приобретает задача прогнозирования состояний такого объекта под действием различных факторов. Например, при проектировании и эксплуатации любого сложного технического устройства желательно уметь прогнозировать изменение надежности функционирования как отдельных подсистем, так и всего устройства в целом.

Итак, модель нужна для того, чтобы:

) понять, как устроен конкретный объект: какова его структура, внутренние связи, основные свойства, законы развития, саморазвития и взаимодействия с окружающей средой;

) научиться управлять объектом или процессом, определять наилучшие способы управления при заданных целях и критериях;

3) прогнозировать прямые и косвенные последствия реализации заданных способов и форм воздействия на объект.

моделирование наука эксперимент

4. Основные функции моделирования

1 Моделирование как средство экспериментального исследования

Рассмотрение материальных моделей в качестве орудий экспериментальной деятельности вызывает потребность выяснить, чем отличаются те эксперименты, в которых используются модели, от тех, где они не применяются. Превращение эксперимента в одну из основных форм практики, происходившее параллельно с развитием науки, стало фактом с тех пор, как в производстве сделалось возможным широкое применение естествознания, что в свою очередь было результатом первой промышленной революции, открывшей эпоху машинного производства. Специфика эксперимента как формы практической деятельности в том, что эксперимент выражает активное отношение человека к действительности. В силу этого, в марксистской гносеологии проводится четкое различие между экспериментом и научным познанием. Хотя всякий эксперимент включает и наблюдение как необходимую стадию исследования. Однако в эксперименте помимо наблюдения содержится и такой существенный для революционной практики признак как активное вмешательство в ход изучаемого процесса. "Под экспериментом понимается вид деятельности, предпринимаемой в целях научного познания, открытия объективных закономерностей и состоящий в воздействии на изучаемый объект (процесс) посредством специальных инструментов и приборов." .

Существует особая форма эксперимента, для которой характерно использование действующих материальных моделей в качестве специальных средств экспериментального исследования. Такая форма называется модельным экспериментом. В отличие от обычного эксперимента, где средства эксперимента так или иначе взаимодействуют с объектом исследования, здесь взаимодействия нет, так как экспериментируют не с самим объектом, а с его заместителем. При этом объект-заместитель и экспериментальная установка объединяются, сливаются в действующей модели в одно целое. Таким образом, обнаруживается двоякая роль, которую модель выполняет в эксперименте: она одновременно является и объектом изучения и экспериментальным средством. Для модельного эксперимента, по мнению ряда авторов , характерны следующие основные операции:

Переход от натурального объекта к модели - построение модели (моделирование в собственном смысле слова);

Экспериментальное исследование модели;

Переход от модели к натуральному объекту, состоящий в перенесении результатов, полученных при исследовании, на этот объект.

Модель входит в эксперимент, не только замещая объект исследования, она может замещать и условия, в которых изучается некоторый объект обычного эксперимента. Обычный эксперимент предполагает наличие теоретического момента лишь в начальный момент исследования - выдвижение гипотезы, ее оценку и т.д., а также на завершающей стадии - обсуждение и интерпретация полученных данных, их обобщение. В модельном эксперименте необходимо также обосновать отношение подобия между моделью и натуральным объектом и возможность экстраполировать на этот объект полученные данные. В.А. IIIтофф в своей книге "Моделирование и философия" говорит о том, что теоретической основой модельного эксперимента, главным образом в области физического моделирования, является теория подобия. Она дает правила моделирования для случаев, когда модель и натура обладают одинаковой (или почти одинаковой) физической природой (2 с31). Но в настоящее время практика моделирования вышла за пределы сравнительно ограниченного круга механических явлений. Возникающие математические модели, которые отличаются по своей физической природе от моделируемого объекта, позволили преодолеть ограниченные возможности физического моделирования. При математическом моделировании основой соотношения модель - натура является такое обобщение теории подобия, которое учитывает качественную разнородность модели и объекта, принадлежность их разным формам движения материи. Такое обобщение принимает форму более абстрактной теории изоморфизма систем.

4.2 Моделирование и проблема истины

Интересен вопрос о том, какую роль играет само моделирование, в процессе доказательства истинности и поисков истинного знания. Что же следует понимать под истинностью модели? Если истинность вообще - "соотношение наших знаний объективной действительности"(2 с178), то истинность модели означает соответствие модели объекту, а ложность модели - отсутствие такого соответствия. Такое определение является необходимым, но недостаточным. Требуются дальнейшие уточнения, основанные на принятие во внимание условий, на основе которых модель того или иного типа воспроизводит изучаемое явление. Например, условия сходства модели и объекта в математическом моделировании, основанном на физических аналогиях, предполагающих при различии физических процессов в модели и объекте тождество математической формы, в которой выражаются их общие закономерности, являются более общими, более абстрактными. Таким образом, при построении тех или иных моделей всегда сознательно отвлекаются от некоторых сторон, свойств и даже отношений, в силу чего, заведомо допускается несохранение сходства между моделью и оригиналом по ряду параметров. Так планетарная модель атома Резерфорда оказалась истинной в рамках исследования электронной структуры атома, а модель Дж. Дж. Томпсона оказалась ложной, так как ее структура не совпадала с электронной структурой. Истинность - свойство знания, а объекты материального мира не истинны, неложны, просто существуют. В модели реализованы двоякого рода знания:

Знание самой модели (ее структуры, процессов, функций) как системы, созданной с целью воспроизведения некоторого объекта;

Теоретические знания, посредством которых модель была построена.

Имея в виду именно теоретические соображения и методы, лежащие в основе построения модели, можно ставить вопросы о том, на сколько верно данная модель отражает объект и насколько полно она его отражает. В таком случае возникает мысль о сравнимости любого созданного человеком предмета с аналогичными природными объектами и об истинности этого предмета. Но это имеет смысл лишь в том случае, если подобные предметы создаются со специальной целью изобразить, скопировать, воспроизвести определенные черты естественного предмета. Таким образом, можно говорить о том, истинность присуща материальным моделям:

 в силу связи их с определенными знаниями;

 в силу наличия (или отсутствия) изоморфизма ее структуры со структурой моделируемого процесса или явления;

в силу отношения модели к моделируемому объекту, которое делает ее частью познавательного процесса и позволяет решать определенные познавательные задачи.

"И в этом отношении материальная модель является гносеологически вторичной, выступает как элемент гносеологического отражения"(2 с180).

Модель можно рассматривать не только как орудие проверки того, действительно ли существуют такие связи, отношения, структуры, закономерности, которые формулируются в данной теории и выполняются в модели. Успешная работа модели есть практическое доказательство истинности теории, то есть это часть экспериментального доказательства истинности этой теории.

5. Место моделей в структуре эксперимента, модельный эксперимент

Может показаться, что всякий корректно поставленный эксперимент предполагает использование действующей модели. В самом деле, поскольку в экспериментальной установке исследуется явление в «чистом» виде и полученные результаты характеризуют не только данное единичное явление в единичном опыте, но и другие явления этого класса, на которые переносятся каким-то способом результаты опыта, постольку данное явление можно считать в известном смысле моделью других явлений этого же класса. Однако это не так, ибо отношение между явлениями, которое изучается в данном единичном эксперименте, и другими явлениями этой же области есть отношение тождества, а не аналогии, между тем как именно последняя существенна для модельного отношения. Поэтому следует выделить особую! форму эксперимента, для которой характерно использование действующих материальных моделей в качестве специальных средств экспериментального исследования. Такая форма эксперимента называется модельным экспериментом или моделированием.

Существенным отличием модельного эксперимента от обычного является его своеобразная структура. В то время как в обычном эксперименте средства экспериментального исследования так или иначе непосредственно взаимодействуют с объектом исследования, в модельном эксперименте такого взаимодействия нет, поскольку здесь экспериментируют не с самим объектом, а с его заместителем. При этом примечательно, что объект-заместитель и экспериментальная установка объединяются, сливаются в действующей модели в одно целое. «Моделирование, - пишет академик Л. И. Седов, - это есть замена изучения интересующего нас явления в натуре изучением аналогичного явления на модели меньшего или большего масштаба, обычно в специальных лабораторных условиях. Основной смысл моделирования заключается в том, чтобы по результатам опытов с моделями можно было дать необходимые ответы о характере эффектов и о различных величинах, связанных с явлением в натурных условиях».

Рассмотрим в этой связи более подробно структуру модельного эксперимента на конкретном примере. Возьмем для этого модель движения газов в паровом котле. Такая модель строится и изучается следующим образом. Из промышленных испытаний котла-объекта получают некоторые данные и параметры, представленные в виде характеристических величин. При помощи соответствующих теоретических средств (логические правила, математические средства, правила и критерии теории подобия) производится расчет модели, который позволяет решить вопрос об оптимальных условиях ее конструкции (размеры, физическая природа моделирующих элементов, выбор материалов, способы и цели ее последующего исследования). Таким образом, первый этап - это теоретический расчет модели теоретические соображения о задачах, целях и способах последующего экспериментирования с нею. Следующим шагом является создание самой модели. Далее производятся наблюдения, измерения необходимых параметров, изменение и варьирование условий, повторение условий работы самой модели и т. п.

Например, изучение модели движения газов в котле состоит в следующем. Не ограничиваясь простым наблюдением, которого явно недостаточно, производят фотографирование, пользуясь специальным освещением, создают штриховые рисунки, которые, хотя носят отпечаток субъективности, все же отличаются большой простотой и наглядностью. Для улучшения условий наблюдения за движением жидкости по трубкам пользуются различными способами ее подкрашивания. Затем производятся измерения давления или скорости движения воды или газов, расхода жидкости, температуры, количества тепла и т. п.

Таким образом, на новом этапе эксперимента, когда модель построена, субъективная деятельность экспериментатора продолжается, но к ней присоединяются новые моменты, относящиеся к объективной стороне эксперимента, - сама модель (т. е. некоторая экспериментальная установка) и технические средства (лампы, экраны, фотоаппараты, химические вещества, термометры, калориметры и другие измерительные приборы), при помощи которых осуществляются наблюдения и измерения. Все эти средства, которыми пользуются при изучении модели, представляют собой материальные средства, характеризующие объективную сторону всякого эксперимента. Но здесь, помимо них, к объективной стороне относится сама модель, в нашем случае - модель парового котла.

Законно поставить вопрос: каково же место модели в эксперименте? Ясно, что она представляет собой часть гносеологического объекта, как и средства экспериментального исследования, но входит ли она целиком в состав последних или же является чем-то отличным от них?

С одной стороны, очевидно, что модель построена не как самоцель, а как средство изучения какого-то другого объекта, который она замещает, с которым она находится в определенных отношениях сходства или соответствия. Исследователя интересуют свойства модели не сами по себе, а лишь постольку, поскольку их изучение позволяет судить о свойствах другого предмета, получать о нем некоторую информацию. Этот предмет и выступает как подлинный объект изучения, а по отношению к нему модель является лишь средством экспериментального исследования. С другой стороны, в данном эксперименте модель является предметом изучения. Изучается режим ее работы в определенных условиях, над ней ведутся не только визуальные наблюдения, но и измеряются ее параметры при помощи специальных приборов. Она подвергается определенным причинным воздействиям, и экспериментатор регистрирует реакцию данной системы на эти планомерные воздействия и т. п. Словом, в данном эксперименте изучается модель как некий объект исследования, и в этом отношении она является объектом изучения.

Таким образом, обнаруживается двоякая роль, которую модель выполняет в эксперименте: она одновременно является и объектом изучения (поскольку замещает другой, подлинный объект), и экспериментальным средством (поскольку является средством познания этого объекта).

Вследствие двоякой роли модели структура эксперимента; существенно изменяется, усложняется. Если в обычном, или натурном, эксперименте объект исследования и прибор находились в непосредственном взаимодействии, так как экспериментатор с помощью прибора воздействовал прямо на изучаемый объект, то в модельном эксперименте внимание экспериментатора сосредоточено на исследовании модели, которая теперь подвергается всевозможным воздействиям и исследуется с помощью приборов. Подлинный же объект изучения непосредственно в самом эксперименте не участвует.

Для модельного эксперимента характерны следующие основные операции: 1) переход от натурного объекта к модели - построение модели (моделирование в собственном смысле слова); 2) экспериментальное исследование модели; 3) переход от модели к натурному объекту, состоящий в перенесении результатов, полученных при исследовании, на этот объект.

Модель входит в эксперимент, не только замещая объект исследования, она может также замещать и условия, в которых изучается некоторый объект обычного эксперимента.

Ввиду того, что в модельном эксперименте исследуется не сам объект изучения, а его заместитель, естественно возникает вопрос, на каком основании и в каких границах можно переносить данные, полученные на модели, на моделируемый объект. Этот вопрос решается в зависимости от особенностей различных групп материальных моделей.

Независимо от окончательного вывода о познавательных возможностях модельных экспериментов следует сразу же обратить внимание на то, что в структуре этих экспериментов значительно усилена роль теории как необходимого звена, связывающего постановку опыта и его результаты с объектом исследования. Если обычный эксперимент предполагает наличие теоретического момента в начальной стадии опыта - возникновение проблемы, выдвижение и оценка гипотезы, выведение следствий, теоретические соображения, связанные с конструкцией экспериментальной установки, а также на завершающей стадии - обсуждение и интерпретация полученных данных, их обобщение, то в модельном эксперименте, кроме того, необходимо теоретически обосновать отношение между моделью и натурным объектом. Без этого обоснования модельный эксперимент теряет свое специфическое познавательное значение, ибо он перестает быть источником информации о действительном, или натурном, объекте. Таким образом, в модельном эксперименте теоретическая сторона представлена значительно сильнее, чем в обычном, он еще в большей степени является соединением теории и практики.

Хотя модельный эксперимент расширяет возможности экспериментального исследования ряда объектов, в отмеченном только что обстоятельстве нельзя не заметить некоторой слабости этого метода по сравнению с обычным экспериментом. Включение теории (сознательной деятельности субъекта) в качестве звена, связывающего модель и объект, может стать источником ошибок, что снижает доказательную силу модельного эксперимента. Однако неограниченные возможности практического исследования свойств, поведения, закономерностей объектов, недоступных по каким-либо причинам для обычного непосредственного экспериментирования, возможности открытия новых способов расширения сферы человеческого познания путем применения модельного эксперимента свидетельствуют о его преимуществах по сравнению с прямым экспериментом.

Поскольку в модельном эксперименте непосредственному исследованию подвергается модель, а результаты исследования переносятся на моделируемый объект, то теоретическое обоснование права на этот перенос является обязательным условием и составной частью такого эксперимента. Поэтому характеристика теоретических средств, при помощи которых обеспечивается перенос результатов исследования модели на «действительный» объект изучения, является необходимой составной частью описания сущности всякого модельного эксперимента.

Заключение

В связи с вышесказанным представляется целесообразным сделать вывод о том, что метод моделирования является одним из наиболее приемлемых адекватных, объективных и надежных методов научных исследований, позволяющих максимально объективно и всесторонне анализировать многие явления или процессы в большинстве наук при минимальных потерях и риске.

В данном реферате проведен анализ современных взглядов на концепцию моделирования, как с практической, так и с методологической точки зрения. Сделана попытка понять теоретические и философские аспекты измерения, как познавательного процесса.

В моем понимании, основная задача данной работы осмыслить ту роль, которую играли и играет моделирование в становлении науки и техники в историческом аспекте, выявить философскую основу моделирования.

Все вышесказанное необходимо для адекватного и плодотворного использования моделей и моделирования в процессе проведения экспериментальных работ и их математической обработки при исследовании процессов, рассматриваемых в моем научном исследовании.

Литература

1. pmtf.msiu.ru <#"justify">2. Штофф В.А. Моделирование и философия. М.: «Наука», 1966.

Веденов А.А. Моделирование элементов мышления. М.: «Наука», 1988.

Кочергин А.Н. Моделирование мышления. М.: «Наука», 1969.

Фролов И.Т. Гносеологические проблемы моделирования. М.: «Наука», 1961.

Батороев К.Б. Кибернетика и метод аналогий. М.: «Высшая школа», 1974.

Бир С. Кибернетика и управление производством. М.: «Наука», 1965.

Эксперимент. Модель. Теория. М. - Берлин: «Наука», 1982.

9. Мухин О.И. Электронный ресурс.

Седов Л.И. Методы подобия и размерности в механике. М.: «ГИТТЛ», 1957.

Штофф. В.А. Моделирование и философия. М.-Л., «Наука», 1965.

Штофф В.А. Введение в методологию научного познания. Изд. Ленинградского ун-та, 1972.

Похожие работы на - Модель и метод моделирования в научном исследовании

Ольга Олейник
Использование метода моделирования в обучении детей дошкольного возраста

Слайд 1 В современных условиях быстро меняющейся жизни от ребенка требуется не только владение знаниями, но и, в первую очередь, умение добывать эти знания самому и оперировать ими. Одна из главных задач современной педагогики – это поиск возможностей использования скрытых резервов умственной деятельности детей , поиск путей эффективного обучения . Одним из таких путей, интенсивно развивающим детское познание, может стать моделирование .

Дошкольник лишен возможности записать, сделать таблицу, отметить что-либо письменно. В детском саду в основном задействован только один вид памяти – вербальный. Моделирование – это попытка задействовать для решения познавательных задач зрительную, двигательную, ассоциативную память. Доступность этого метода для дошкольников определяется тем , что в основе моделирования лежит принцип замещения - реальный предмет может быть замещен в деятельности детей другим знаком , предметом , изображением.

Слайд2 Актуальность использования наглядного моделирования в работе с детьми состоит в том, что :

- использование наглядного моделирования вызывает у детей интерес ;

Облегчает и ускоряет процесс запоминания и усвоения материала, формирует приемы работы с памятью;

Применяя моделирование , мы учим детей видеть главное , систематизировать полученные знания.

Слайд3 Моделирование - наглядно-практический метод обучения . Метод моделирования впервые был разработан педагогами и психологами Д. Б. Элькониным, Л. А. Венгером, Н. А. Ветлугиной, Н. Н. Поддьяковым. Заключается он в том, что мышление ребенка развивают с помощью специальных схем, моделей , которые в наглядной и доступной для него форме воспроизводят скрытые свойства и связи того или иного объекта.

На использовании наглядных моделей основаны многие методы дошкольного обучения , например метод обучения дошкольников грамоте (Д. Б. Эльконин, Л. Е Журова) предполагает построение и использование наглядной модели звукового состава слова. Разработаны вопросы применения наглядного моделирования для формирования представлений о труде взрослых (В. И. Логинова, Н. М. Крылова) . Большое значение придается использованию графического моделирования в продуктивных видах деятельности детей (Л. И. Цеханская, Ю. Ф. Гаркушина, в конструировании (Л. А. Парамонова) . Модели можно использовать при выполнении детьми физических упражнений (для этого движения зашифровываются в рисунке, воспитателю достаточно показать карточку, и дети начинают выполнять упражнение, изображённое на модели ). В общем, метод моделирования , при достаточном его изучении, можно с успехом применять во всех образовательных областях дошкольного воспитания .

Слайд 4 Модели условно делятся на три группы

1. Предметные. Они помогают воспроизводить структуру и особенность, внутренние и внешние взаимосвязи реальных объектов и явлений. Это разные предметы и конструкции.

Слайд5 (макет аквариума, Земли, природных зон «Север» , «Лес» )

Слайд6 Макет «Чудо-дерево» - это своеобразный «сборник» дидактических игр и игровых упражнений, который можно включить практически в любой вид деятельности в качестве его составной части, позволяя повысить интерес

детей , активизировать их деятельность, а может использоваться и как самостоятельная форма.

Слайд7 2. Предметно-схематические модели .

Слайд8 Здесь выделенные в объекте познания существенные компоненты и связи между ними обозначаются при помощи предметов -заместителей и графических знаков. Примером простой предметно-схематической модели может служить модель для раскрытия понятия о покровительственной окраске, как проявлении связи животного со средой обитания (лист картона определенной расцветки и фигура животного : если их цвета совпадают, то животное не видно). Например : схема роста растения. По ней дети могут рассказать этапы роста. Схемы «Состояния воды» - делать выводы о свойствах воды. Наблюдая за природой на прогулке сравнивать явления и предметы природы. Задания на сравнение положительно влияют на развитие речи детей , и прежде всего на расширение их лексики за счёт введения сравнительных прилагательных : «Летом день длинный, а осенью короткий» , «Весной ночь поменьше, а зимой подлиннее» .

Слайд 9 3. Графические модели . Они передают обобщенно (условно) признаки, связи и отношения явлений. Примером такой модели может быть календарь погоды, который ведут дети, используя специальные значки-символы для обозначения явлений в неживой и живой природе.

Слайд10 Одним из видов графических моделей является мнемотехника. Мнемотехнику в дошкольной педагогике называют по-разному : сенсорно-графическими схемами, предметно-схематическими моделями , схемой составления рассказа, мнемотехнику называют также символической аналогией, графической аналогией, пиктограммами

Мнемотехника - система различных приёмов, облегчающих запоминание и увеличивающих объём памяти детей путём образования дополнительных ассоциаций, организация образовательного процесса в виде игры. Использование мнемотехники в настоящее время становится актуальным. Основной «секрет» мнемотехники очень прост и хорошо известен. Когда человек в своём воображении соединяет несколько зрительных образов, мозг фиксирует эту взаимосвязь. И в дальнейшем при припоминании по одному из образов этой ассоциации мозг воспроизводит все ранее соединённые образы. Мнемотехника - это совокупность правил и приемов, облегчающих процесс запоминания информации.

Опора на визуальный образ очень важна и обязательна, так как если при воспроизведении текста этот зрительный образ не возникает в воображении, то ребёнок не понимает этого текста. Таким образом, приём символизации это наиболее короткий путь к формированию процесса запоминания и точной передачи информации, требующей дословного повторения, например в стихах. Для этого достаточно схематичного изображения отдельных частей, что облегчит запоминание и последующее воспроизведение целостного образа в рифмованной форме.

Модели многофункциональны . Они могут использоваться в непосредственно образовательной, совместной и самостоятельной деятельности.

Коротко коснусь методики обучения детей графическим моделям или графической аналогии. СЛАЙД 12

Применяя графическую аналогию, мы учим детей видеть самое главное (как бы используя прием свертывания ) . С чего начинать?

Начните с самого простого, поиграйте с детьми в игру «Что в круге?» В этой игре дети знакомятся с условным обозначением любых предметов , учатся классифицировать, развивают коммуникативную активность. (практически с педагогами)

Нарисуйте на листе, например кружочки, это могут быть и треугольники, и квадраты – любая геометрическая фигура и при этом перечисляете : «Это яблоко, это груша, это слива» и т. д. Обычно дети понимают, какие предметы вы перечисляете, и помогают назвать недостающие. Потом обводите это большим кругом и спрашиваете : «Что вы перечислили? (Фрукты? Тогда круг – это что? Далее дайте детям возможность перечислить все варианты : круг – это сад, корзина, ваза, тарелка, магазин, рынок, блюдо, натюрморт… Когда иссякнут детские ответы, говорите : «Нет, это не фрукты, это…» , - можете перечислить несколько вариантов названий предметов мебели . Тогда большим кругом будет квартира, склад, магазин, детский сад и прочее. Или – в круге овощи, птицы, цветы, деревья, игрушки, даже сами дети – здесь большой простор для работы. Главная цель игры – показать детям, что предмет можно обозначить геометрической фигурой.

Потом можно пойти дальше – предложить обозначить предметы не любой формой, а той, которая по внешнему виду напоминает перечисленное. Например, овощи, фрукты – кружочком; мебель, дома – прямоугольником; человека – треугольником. Этим вы закрепите у детей умение видеть абстрактный образ объекта.

Когда дети научатся изображать окружающие предметы, героев произведений символами, можно предложить составить модель сказки . Составлять карточки-символы необходимо совместно с детьми. Удобнее всего это делать в режимных моментах. Надо помнить, что количество линий в символической аналогии должно быть минимальным. В младших группах, когда детей только знакомят с символизацией, педагог может предложить им карточки на выбор. Обговорите, обыграйте с малышами эти изображения, чтобы дети убедились сами и убедили нас, какая карточка, что означает. (практика с педагогами) Показываю карточку с изображением круга и спрашиваю : «На что похоже?» Ответы будут разные : мяч, круг, колесо, солнышко. «А давайте сделаем так, чтобы солнышко светило» . Малыши обязательно скажут, что не хватает лучиков. Вот и родился новый символ.

Начиная со средней группы, когда у ребят уже имеются более широкие понятия об окружающем мире, их самих привлекают к составлению карточек-символов. Каждый ребенок самостоятельно придумывает свой символ, объясняет, почему нарисовал так, а не иначе, затем при обсуждении выбирается наиболее подходящий.

Очень удобно использовать прием эмпатии . Например, при помощи наводящих вопросов педагога ребенок входит в роль собаки, которая яростно лает, припадая на передние лапы, или роль взъерошенного котенка, у которого шерсть приподнята кверху.

При составлении карточек-символов, обозначающих действия, признаки предметов , состояния (весело, жалобно, испуганно и т. д) для более полного понимания необходимо с детьми поиграть, воспроизвести действие на эмоционально-жестовом уровне. (практика с педагогами на эти две загадки)

Под соснами, под елками лежит мешок с иголками.

Круглая, но не мяч, желтая, но не тыква, с хвостом, но не мышь

Загадывая загадки, вы приучаете ребенка рассуждать, делать выводы и доказывать свою точку зрения.

Мнемотаблицы особенно эффективны при разучивании стихотворений. Для разучивания каждого стихотворения необходимо разрабатывать свою мнемотаблицу, подобрать рисунки к выбранному стихотворению (желательно на каждую строчку) . И так, шаг за шагом создается мнемотаблица. (предложить педагогам стихотворение. Работа.)

Практика показывает, что постепенно память дошкольников укрепляется , их образное мышление развивается, они запоминают тексты намного лучше, больше по объёму, легче и эмоциональнее. При таком способе работы стихотворение запоминается целиком. Разучивание стало для дошкольников делом весёлым , эмоциональным, и при этом содержание текста – осязаемым, видимым, представляемым. СЛАЙД 13

И так, давайте подведем итог нашей встречи и вместе составим этапы обучения моделированию дошкольников :

1. Детям предлагается описать новые объекты с помощью готовой модели , ранее усвоенной ими.

2. Организуется сравнение двух объектов между собой, в процессе которого выделяются признаки и сходства.

3. Постепенное увеличение количества сравниваемых объектов

4. Обучение детей моделированию существенных или значимых для деятельности признаков.

5. Создание элементарных моделей воспитателем и детьми (рыбы, птицы. Звери, растения и т. д.)

Используя в своей работе наглядное моделирование , мы учим детей : СЛАЙД 14

добывать информацию, проводить исследование, делать сравнения, составлять четкий внутренний план умственных действий, речевого высказывания;

формулировать и высказывать суждения, делать умозаключения;

применение наглядного моделирования оказывает положительное влияние на развитие не только речевых процессов, но и неречевых : внимания, памяти, мышления.

Таким образом, моделирование – это метод , использование которого позволяет выявить скрытые связи между явлениями и сделать их доступными пониманию ребенка.

При использовании метода моделирования свойства и поведение объекта изучают путем применения вспомогательной системы – модели, находящейся в определенном объективном соответствии с исследуемым объектом.

Под объектом исследования понимается либо некоторая система, элементы которой в процессе достижения конечной цели реализуют один или несколько процессов, либо некоторый процесс, реализуемый элементами одной или нескольких систем. В связи с этим в дельнейшем тексте термины «модель объекта», «модель системы», «модель процесса» следует воспринимать как эквивалентные.

Представления о тех или иных свойствах объектов, их взаимосвязях формируются исследователем в виде описания этих объектов на обычном языке, в виде рисунков, графиков, формул или реализуются в виде макетов и других устройств. Подобные способы описания обобщаются в едином понятии – модель , а построение и изучение моделей называетсямоделированием .

Заслуживает предпочтения следующее определение: модель – объект любой природы, который создается исследователем с целью получения новых знаний об объекте-оригинале и отражает только существенные (с точки зрения разработчика) свойства оригинала.

Модель считается адекватной объекту-оригиналу, если она с достаточной степенью приближения на уровне понимания моделируемого процесса исследователем отражает закономерности процесса функционирования реальной системы во внешней среде.

Модели позволяют вынести упрощенное представление о системе и получить некоторые результаты намного проще, чем при изучении реального объекта. Более того, гипотетически модели объекта могут быть исследованы и изучены перед тем, как объект будет создан.

В практике исследования производственно-экономических объектов модели могут применяться для самых разных целей, что вызывает использование моделей различных классов. Построение одной-единственной математической модели для сложной производственной системы практически не представляется возможным без разработки вспомогательных моделей. Поэтому, как правило, при создании конечной математической модели исследуемого объекта строят частные вспомогательные модели, отражающие ту или иную информацию об объекте, имеющуюся у разработчика на данном этапе построения модели.

В основе моделирования лежит теория подобия , которая утверждает, что абсолютное подобие может иметь место лишь при замене одного объекта другим точно таким же. При моделировании абсолютное подобие не имеет места и стремятся к тому, чтобы модель достаточно хорошо отображала исследуемую сторону функционирования объекта.

Классификационные признаки. В качестве одного из первых признаков классификации видов моделирования можно выбрать степень полноты модели и разделить модели в соответствии с этим признаком на полные, неполные и приближенные. В основе полного моделирования лежит полное подобие, которое проявляется как во времени, так и в пространстве. Для неполного моделирования характерно неполное подобие модели изучаемому объекту. В основе приближенного моделирования лежит приближенное подобие, при котором некоторые стороны функционирования реального объекта не моделируются совсем. Классификация видов моделирования системS приведена на рис.1.1.

В зависимости от характера изучаемых процессов в системе S все виды моделирования могут быть разделены на детерминированные и стохастические, статические и динамические, дискретные, непрерывные и дискретно-непрерывные.Детерминированное моделирование отображает детерминированные процессы, т.е. процессы, в которых предполагается отсутствие всяких случайных воздействий;стохастическое моделирование отображает вероятностные процессы и события. В этом случае анализируется ряд реализаций случайного процесса и оцениваются средние характеристики, т.е. набор однородных реализаций.Статическое моделирование служит для описания поведения объекта в какой-либо момент времени, адинамическое моделирование отражает поведение объекта во времени.Дискретное моделирование служит для описания процессов, которые предполагаются дискретными, соответственно непрерывное моделирование позволяет отразить непрерывные процессы в системах, адискретно-непрерывное моделирование используется для тех случаев, когда хотят выделить наличие как дискретных, так и непрерывных процессов.

В зависимости от формы представления объекта (системы S ) можно выделить мысленное и реальное моделирование.

Мысленное моделирование часто является единственным способом моделирования объектов, которые либо практически нереализуемы в заданном интервале времени, либо существуют вне условий, возможных для их физического создания. Например, на базе мысленного моделирования могут быть проанализированы многие ситуации микромира, которые не поддаются физическому эксперименту. Мысленное моделирование может быть реализовано в виде наглядного, символического и математического.

Рис. 1.1. Классификация видов моделирования систем

При наглядном моделировании на базе представлений человека о реальных объектах создаются различные наглядные модели, отображающие явления и процессы, протекающие в объекте. В основугипотетического моделирования исследователем закладывается некоторая гипотеза о закономерностях протекания процесса в реальном объекте, которая отражает уровень знаний исследователя об объекте и базируется на причинно-следственных связях между входом и выходом изучаемого объекта. Гипотетическое моделирование используется, когда знаний об объекте недостаточно для построения формальных моделей.

Аналоговое моделирование основывается на применении аналогий различных уровней. Наивысшим уровнем является полная аналогия, имеющая место только для достаточно простых объектов. С усложнением объекта используют аналогии последующих уровней, когда аналоговая модель отображает несколько либо только одну сторону функционирования объекта.

Существенное место при мысленном наглядном моделировании занимает макетирование . Мысленный макет может применяться в случаях, когда протекающие в реальном объекте процессы не поддаются физическому моделированию, либо может предшествовать проведению других видов моделирования. В основе построения мысленных макетов также лежат аналогии, однако обычно базирующиеся на причинно-следственных связях между явлениями и процессами в объекте. Если ввести условное обозначение отдельных понятий, т.е. знаки, а также определенные операции между этими знаками, то можно реализоватьзнаковое моделирование и с помощью знаков отображать набор понятий – составлять отдельные цепочки из слов и предложений. Используя операции объединения, пересечения и дополнения теории множеств, можно в отдельных символах дать описание какого-то реального объекта.

В основе языкового моделирования лежит некоторый тезаурус. Последний образует из наборов входящих понятий, причем этот набор должен быть фиксированным. Следует отметить, что между тезаурусом и обычным словарем имеются принципиальные различия. Тезаурус – словарь, который очищен от неоднозначности, т.е. в нем каждому слову может соответствовать лишь единственное понятие, хотя в обычном словаре одному слову могут соответствовать несколько понятий.

Символическое моделирование представляет собой искусственный процесс создания логического объекта, который замещает реальный и выражает основные свойства его отношений с помощью определенной системы знаков и символов.

Математическое моделирование. Для исследования характеристик процесса функционирования любой системыS математическими методами, включая и машинные, должна быть проведена формализация этого процесса, т.е. построена математическая модель.

Под математическим моделированием будем понимать процесс установления соответствия данному реальному объекту некоторого математического объекта, называемого математической моделью, и исследование этой модели, позволяющее получать характеристики рассматриваемого реального объекта. Вид математической модели зависит как от природы реального объекта, так и задач исследования объекта и требуемой достоверности и точности решения этой задачи. Любая математическая модель, как и всякая другая, описывает реальный объект лишь с некоторой степенью приближения к действительности. Математическое моделирование для исследования характеристик процесса функционирования систем можно разделить на аналитическое, имитационное и комбинированное.

Для аналитического моделирования характерно то, что процессы функционирования элементов системы записываются в виде некоторых функциональных соотношений (алгебраических, интегродифференциальных, конечно-разностных и т.п.) или логических условий.Аналитическая модель может быть исследована следующими методами: а) аналитическим, когда стремятся получить в общем виде явные зависимости для искомых характеристик; б) численным, когда, не умея решать уравнения в общем виде, стремятся получить числовые результаты при конкретных начальных данных; в) качественным, когда, не имея решения в явном виде, можно найти некоторые свойства решения (например, оценить устойчивость решения).

Наиболее полное исследование процесса функционирования системы можно провести, если известны явные зависимости, связывающие искомые характеристики с начальными условиями, параметрами и переменными системы S . Однако такие зависимости удается получить только для сравнительно простых систем. При усложнении систем исследование их аналитическим методом наталкивается на значительные трудности, которые часто бывают непреодолимыми. Поэтому, желая использовать аналитический метод, в этом случае идут на существенное упрощение первоначальной модели, чтобы иметь возможность изучить хотя бы общие свойства системы. Такое исследование на упрощенной модели аналитическим методом помогает получить ориентировочные результаты для определения более точных оценок другими методами. Численный метод позволяет исследовать по сравнению с аналитическим методом более широкий класс систем, но при этом полученные решения носят частный характер. Численный метод особенно эффективен при использовании ЭВМ.

В отдельных случаях исследования системы могут удовлетворить и те выводы, которые можно сделать при использовании качественного метода анализа математической модели. Такие качественные методы широко используются, например, в теории автоматического управления для оценки эффективности различных вариантов систем управления.

В настоящее время распространены методы машинной реализации исследования характеристик процесса функционирования больших систем. Для реализации математической модели на ЭВМ необходимо построить соответствующий моделирующий алгоритм.

При имитационном моделировании реализующий модель алгоритм воспроизводит процесс функционирования системыS во времени, причем имитируются элементарные явления, составляющие процесс с сохранением их логической структуры и последовательности протекания во времени, что позволяет по исходным данным получить сведения о состояниях процесса в определенные моменты времени, дающие возможность оценить характеристики системыS .

Основным преимуществом имитационного моделирования по сравнению с аналитическим является возможность решения более сложных задач. Имитационные модели позволяют достаточно просто учитывать такие факторы, как наличие дискретных и непрерывных элементов, нелинейные характеристики элементов системы, многочисленные случайные воздействия и др., которые часто создают трудности при аналитических исследованиях. В настоящее время имитационное моделирование – наиболее эффективный метод исследования больших систем, а часто и единственный практически доступный метод получения информации о поведении системы, особенно на этапах ее проектирования.

Когда результаты, полученные при воспроизведении на имитационной модели процесса функционирования системы S , Являются реализациями случайных величин и функций, тогда для нахождения характеристик процесса требуется его многократное воспроизведение с последующей статистической обработкой информации и целесообразно в качестве метода машинной реализации имитационной модели использовать метод статистического моделирования. Первоначально был разработан метод статистических испытаний, представляющий собой численный метод, который применялся для моделирования случайных величин и функций, вероятностные характеристики которых совпадали с решениями аналитических задач (такая процедура получила название метода Монте-Карло). Затем этот прием стали применять и для машинной имитации с целью исследования характеристик процессов функционирования систем, подверженных случайным воздействиям, т.е. появился метод статистического моделирования. Таким образом,методом статистического моделирования будем в дальнейшем называть метод машинной реализации имитационной модели, аметодом статистических испытаний (Монте-Карло) – численный метод решения аналитической задачи.

Метод имитационного моделирования позволяет решать задачи анализа больших систем S , включая задачи оценки: вариантов структуры системы, эффективности различных алгоритмов управления системой, влияния изменения различных параметров системы. Имитационное моделирование может быть положено также в основу структурного, алгоритмического и параметрического синтеза больших систем, когда требуется создать систему, с заданными характеристиками при определенных ограничениях, которая является оптимальной по некоторым критериям оценки эффективности.

При решении задач машинного синтеза систем на основе их имитационных моделей помимо разработки моделирующих алгоритмов для анализа фиксированной системы необходимо также разработать алгоритмы поиска варианта системы. Бале в методологии машинного моделирования будем различать два основных раздела: статику и динамику, – основным содержанием которых являются соответственно вопросы анализа и синтеза систем, заданных моделирующими алгоритмами.

Комбинированное (аналитико-имитационное) моделирование при анализе и синтезе систем позволяет объединить достоинства аналитического и имитационного моделирования. При построении комбинированных моделей проводится предварительная декомпозиция процесса функционирования объекта на составляющие подпроцессы и для тех из них, где это возможно, используются аналитические модели. Такой комбинированный подход позволяет охватить качественно новые классы систем, которые не могут быть исследованы с использованием только аналитического и имитационного моделирования в отдельности.

Другие виды моделирования . Приреальном моделировании используется возможность исследования различных характеристик либо на реальном объекте целиком, либо на его части. Такие исследования могут проводиться как на объектах, работающих в нормальных режимах, так и при организации специальных режимов для оценки интересующих исследователя характеристик (при других значениях переменных и параметров, в другом масштабе времени и т.п.). Реальное моделирование является наиболее адекватным, но при этом его возможности с учетом особенностей реальных объектов ограничены. Например, проведение реального моделирования АСУ предприятием потребует, во-первых, создания такой АСУ, а во-вторых, проведения экспериментов с управляемым объектом, т.е. предприятием, что в большинстве случаев невозможно.

К основным разновидностям реального моделирования относятся:

    Натурное моделирование , под которым понимают проведение исследования на реальном объекте с последующей обработкой результатов эксперимента на основе теории подобия. При функционировании объекта в соответствии с поставленной целью удается выявить закономерности протекания реального процесса. Необходимо отметить, что такие разновидности натурного эксперимента, как производственный эксперимент и комплексные испытания, обладают высокой степенью достоверности.

    Физическое моделирование отличается от натурного тем, что исследование проводится на установках, которые сохраняют природу явлений и обладают физическим подобием.

С точки зрения математического описания объекта и в зависимости от его характера модели можно разделить на модели аналоговые (непрерывные), цифровые (дискретные) и аналого-цифровые (комбинированные). Под аналоговой моделью понимается модель, которая описывается уравнениями, связывающими непрерывные величины. Подцифровой понимается модель, которая описывается уравнениями, связывающими дискретные величины, представленные в цифровом виде. Поданалого-цифровой понимается модель, которая может быть описана уравнениями, связывающими непрерывные и дискретные величины.

Особое место в моделировании занимает кибернетическое моделирование , в котором отсутствует непосредственное подобие физических процессов, происходящих в моделях, реальным процессам. В этом случае стремятся отобразить лишь некоторую функцию и рассматривают реальный объект как «черный ящик», имеющий ряд входов и выходов, и моделируют некоторые связи между выходами и входами. Чаще всего при использовании кибернетических моделей проводят анализ поведенческой стороны объекта при различных воздействиях внешней среды. Таким образом, в основе кибернетических моделей лежит отражение некоторых информационных процессов управления, что позволяет оценить поведение реального объекта. Для построения имитационной модели в этом случае необходимо выделить исследуемую функцию реального объекта, попытаться формализовать эту функцию в виде некоторых операторов связи между входом и выходом и воспроизвести на имитационной модели данную функцию, причем на базе совершенно иных математических соотношений и, естественно, иной физической реализации процесса.

Целевое назначение модели. По целевому назначению модели подразделяются на модели структуры, функционирования и стоимостные (модели расхода ресурсов).

Модели структуры отображают связи между компонентами объекта и внешней средой и подразделяются на:

    каноническую модель , характеризующую взаимодействие объекта с окружением через входы и выходы;

    модель внутренней структуры , характеризующую состав компонентов объекта и связи между ними;

    модель иерархической структуры (дерево системы), в которой объект (целое) расчленяется на элементы более низкого уровня, действия которых подчинены интересам целого.

Модель структуры обычно представляется в виде блок-схемы, реже графов и матриц связей.

Модели функционирования включают широкий спектр символических моделей, например:

модель жизненного цикла системы, описывающая процессы существования системы от зарождения замысла ее создания до прекращения функционирования;

модели операций, выполняемых объектом и представляющих описание взаимосвязанной совокупности процессов функционирования отдельных элементов объекта при реализации тех или иных функций объекта. Так, в состав моделей операций могут входить модели надежности, характеризующие выход элементов системы из строя под влиянием эксплуатационных факторов, и модели живучести факторов, характеризующие выход элементов системы из строя под влиянием целенаправленного воздействия внешней среды;

информационные модели, отображающие во взаимосвязи источники и потребители информации, виды информации, характер ее преобразования, а также временные и количественные характеристики данных;

процедурные модели, описывающие порядок взаимодействия элементов исследуемого объекта при выполнении различных операций, например обработки материалов, деятельности персонала, использования информации, в том числе и реализации процедур принятия управленческих решений;

временные модели, описывающие процедуру функционирования объекта во времени и распределение ресурса «время» по отдельным компонентам объекта.

Стоимостные модели, как правило, сопровождают модели функционирования объекта и по отношению к ним вторичны, «питаются» от них информацией и совместно с ними позволяют проводить комплексную технико-экономическую оценку объекта или его оптимизацию по экономическим критериям.

При анализе и оптимизации производственно-экономических объектов проводится объединение построенных математических функциональных моделей с математическими стоимостными моделями в единую экономико-математическую модель.

Насколько можно судить по литературным источникам общепринятой классификации моделей экономических систем пока не существует. Однако представляется достаточно полезной классификация математических моделей экономических систем, приведенная в книге Т. Нейлора «Машинные имитационные эксперименты с моделями экономических систем» (1971 г.) (рис. 1.2).

Рис.1.2. Классификация экономических моделей

Экономико-математической моделью (ЭММ) называется выражение, состоящее из совокупности связанных между собой математическими зависимостями (формулами, уравнениями, неравенствами, логическими условиями величин – факторов, все или часть которых имеют экономический смысл. По своей роли в ЭММ эти факторы целесообразно подразделить на параметры и характеристики (рис. 1.3).

Рис. 1.3. Классификация факторов по их роли в ЭВМ

При этом параметрами объекта называются факторы, характеризующие свойства объекта или составляющих его элементов. В процессе исследования объекта ряд параметров может изменяться, поэтому они называютсяпеременными, которые в свою очередь подразделяются на переменные состояния и переменные управления. Как правило, переменные состояния объекта являются функцией переменных управления и воздействий внешней среды.Характеристиками (выходными характеристиками) называются интересующие исследователя непосредст-венные конечные результаты функционирования объекта (естественно, что выходные характеристики являются переменными состояния). Соответственно характеристики внешней среды описывают свойства внешней среды, которые сказываются на процессе и результате функционирования объекта. Значения ряда факторов, определяющие начальное состояние объекта или внешней среды, называютсяначальными условиями.

При рассмотрении ЭММ оперируют следующими понятиями: критерий оптимальности, целевая функция, система ограничений, уравнения связи, решение модели.

Критерием оптимальности называется некоторый показатель, имеющий экономическое содержание, служащий формализацией конкретной цели управления и выражаемый при помощи целевой функции через факторы модели. Критерий оптимальности определяет смысловое содержание целевой функции. В ряде случаев в качестве критерия оптимальности может выступать одна из выходных характеристик объекта.

Целевая функция математически связывает между собой факторы модели, ее значение определяется значениями этих величин. Содержательный смысл целевой функции придает только критерий оптимальности.

Не следует смешивать критерий оптимальности и целевую функцию. Так, например, критерий прибыли и стоимости произведенной продукции могут описываться одной и той же целевой функцией:

, (1.1)

где
– номенклатура производимой продукции;– объем выпускаi -ой номенклатуры;– прибыль от выпуска единицыi -ой номенклатуры или стоимость единицыi -ой номенклатуры в зависимости от смысла критерия оптимальности.

Критерий прибыли может рассчитываться и по нелинейной целевой функции:

, (1.2)

Если прибыль от выпуска единицы i -ой номенклатуры является функцией от объема выпуска.

При наличии нескольких критериев оптимальности каждый из них будет формализован своей частной целевой функцией , где
– число критериев оптимальности. Для однозначного выбора оптимального решения исследователь может сформулировать новую целевую функцию

Однако целевая функция может уже не нести экономического смысла, в этом случае критерий оптимальности для нее отсутствует.

Система ограничений определяет пределы, сужающие область осуществимых, приемлемых или допустимых решений и фиксирующие основные внешние и внутренние свойства объекта. Ограничения определяют область протекания процесса, пределы изменения параметров и характеристик объекта.

Уравнения связи являются математической формализацией системы ограничений. Между понятиями «система ограничений» и «Уравнения связи» существует точно такая же аналогия, как между понятиями «критерий оптимальности» и «целевая функция»: различные по смыслу ограничения могут описываться одинаковыми уравнениями связи, а одно и то же ограничение в разных моделях записываться различными уравнениями связи.

Таким образом, именно критерий оптимальности и система ограничений в первую очередь определяют концепцию построения будущей математической модели, т.е. концептуальную модель, а их формализация, т.е. целевая функция и уравнения связи, представляют собой математическую модель.

Решением математической модели называется такой набор (совокупность) значений переменных, который удовлетворяет ее уравнениям связи. Решения, имеющие экономический смысл, называют структурно допустимыми. Модели, имеющие много решений, называются вариантными в отличие от безвариантных, имеющих одно решение. Среди структурно допустимых решений вариантной модели, как правило, находится одно решение, при котором целевая функция в зависимости от смысла модели имеет наибольшее или наименьшее значение. Такое решение, как и соответствующее значение целевой функции, называетсяоптимальным (в частности, наименьшим или наибольшим).

Использование ЭММ, особенно оптимальных, предполагает не только построение модели, соответствующей поставленной задаче, но и ее решение при помощи подходящего метода. В связи с этим иногда под моделированием (в узком смысле) понимается этап нахождения решения модели, т.е. вычисления значений исследуемых характеристик и определение оптимальности различных вариантов изучаемого объекта с целью выбора наилучшего варианта его построения и функционирования. Данный этап представляет собой реализацию и исследование ЭММ на определенном наборе вычислительных средств. Выбор метода решения оптимизационных ЭММ зависит от математической формы, связывающей факторы модели, наличия тех или иных признаков (учет динамики, учет стохастичности и т.д.). С точки зрения корректного выбора метода решения модели наиболее существенными признаками являются характер цели исследования, формализованность связей между параметрами и характеристиками, учет вероятностной природы объекта, а также фактора времени.

По характеру цели исследования ЭММ делятся на оптимизационные (нормативные) иописательные (дескриптивные или ЭММ прямого счета).

Характерной чертой оптимизационных моделей является наличие одной или нескольких целевых функций. При этом в первом случае оптимизационные ЭММ называются монокритериальными , а во втором –многокритериальными . В общем виде монокритериальная ЭММ может быть представлена следующей системой отношений:

где Е – критерий оптимальности объекта;– управляемые переменные,
;– неуправляемые факторы модели;
;– уравнения связи, представляющие собой формализацию системы ограничений,
;– целевая функция – формализованное выражение критерия оптимальности.

Выражение
означает, что в ограничениях может стоять любое из приведенных в фигурных скобках логических условий.

Решение модели, заданной соотношениями (1.4) и (1.5), заключается в нахождении совокупности значений переменных

,

Обращающий в max (илиmin ) целевую функциюЕ при заданных уравнениях связи.

Специфика конкретных задач управления производством определила разнообразие типов оптимизационных ЭММ. Это вызвало для ряда наиболее часто повторяющихся типов ситуаций разработку «стандартных» экономико-математических методов их описания, например, распределительные задачи различных классов, задачи управления запасами, ремонта и замены оборудования, проектирования сетей и выбора маршрутов и т.д.

Существенным признаком описательных моделей является отсутствие в них критерия оптимальности. Решение, даваемое ЭММ прямого счета, обеспечивает либо вычисление набора выходных характеристик объекта для одного или нескольких вариантов начальных условий и входных характеристик объекта, либо нахождение какой-либо совокупности значений в структурно допустимой области решений. Примеры типовых задач управления машиностроительным производством, решаемых с помощью описательных моделей, приведены в табл. 1.1.

Таблица 1.1. Примеры описательных моделей

Тип задачи

Вид модели

Математический метод решения

Задачи планирования без оптимизации (расчет объемов производства по видам продукции, увязка планов производства с ресурсами и т.п.)

Балансовые модели

Аппарат линейной алгебры, матричное исчисление

Задачи сетевого планирования и управление (СПУ) без оптимизации

Расчет по формулам модели СПУ

Аппарат теории графов

Задача учета и статистики (оперативный учет, получение различных форм отчетности и т.п.)

Расчет по формулам

Задачи контроля и анализа (анализ влияния и факторов, выявление тенденций, отслеживание отклонений и установление их причин)

Факторный анализ, дисперсионный анализ, регрессионный анализ

Задача создания нормативной базы

Статистические модели обработки реализаций случайных величин

Расчет параметров функционирования сложных систем с неформализованными связями.

Расчет по формулам имитационных моделей

Задачи прогнозирования

Модели регрессионного анализа, оценка параметров и проверка статистических гипотез

Факторный анализ, дисперсионный анализ, регрессионный анализ, аппарат математической статистики

В зависимости от степени формализованности связей f иg i между факторами моделей в выражениях (1.4) и (1.5) различаютаналитические иалгоритмические модели.

Аналитической формой записи называется запись математической модели в виде алгебраических уравнений или неравенств, не имеющих разветвлений вычислительного процесса при определении значений любых переменных состояния модели, целевой функции и уравнений связи. Если в математических моделях единственная целевая функцияf и ограниченияg j заданы аналитически, то подобные модели относятся к классу моделей математического программирования. Характер функциональных зависимостей, выраженных в функцияхf иg j , может быть линейным и нелинейным. Соответственно этому ЭММ делятся налинейные инелинейные , а среди последних в специальные классы выделяютсядробно -линейные ,кусочно-линейные ,квадратичные ивыпуклые модели.

Если мы имеем дело со сложной системой, то зачастую гораздо легче построить ее модель в виде алгоритма, показывающего отношения между элементами системы в процессе ее функционирования, задаваемые обычно в виде логических условий – разветвлений хода течения процесса. Математическое описание для элементов может быть очень простым, однако взаимодействие большого количества простых по математическому описанию элементов и делает эту систему сложной. Алгоритмически же можно описывать даже такие объекты, которые в силу их сложности или громоздкости в принципе не допускают аналитического описания. В связи с этим к алгоритмическим моделям относятся такие, в которых критерии и (или) ограничения описываются математическими конструкциями, включающими логические условия, приводящие к разветвлению вычислительного процесса. К алгоритмическим моделям относятся и так называемые имитационные модели – моделирующие алгоритмы, имитирующие поведение элементов изучаемого объекта и взаимодействие между ними в процессе функционирования.

В зависимости от того, содержит ли ЭММ случайные факторы, она может быть отнесена к классу стохастических илидетерминированных .

В детерминированных моделях ни целевая функцияf , ни уравнения связиg j не содержат случайных факторов. Следовательно, для данного множества входных значений модели на выходе может быть получен только один-единственный результат. Длястохастических ЭММ характерно наличие среди факторовмодели, описываемой соотношениями (1.4) и (1.5), таких, которые имеют вероятностную природу и характеризуются какими-либо законами распределения, причем среди функцийf иg j могут быть и случайные функции. Значения выходных характеристик в таких моделях могут быть предсказаны только в вероятностном смысле. Реализация стохастических ЭММ в большинстве случаев осуществляется на ЭВМ методами имитационного статистического моделирования.

Следующим признаком, по которому можно различать ЭММ, является связь с фактором времени. Модели, в которых входные факторы, а следовательно, и результаты моделирования явно зависят от времени, называются динамическими , а модели, в которых зависимость от времениt либо отсутствует совсем, либо проявляется слабо или неявно, называютстатическими . Интересны в этом отношении имитационные модели: по механизму функционирования они являются динамическими (в модели идет имитация работы объекта в течении некоторого периода времени), а по результатам моделирования – статическими (например, ищется средняя производительность объекта за моделируемый период времени).

Статические модели представляют собой известную степень приближения к реальным объектам и системам, функционирующим во времени. Во многих случаях степень такого приближения, проявляющаяся в допущениях о неизменности или различного рода усреднениях факторов во времени (косвенно или приблизительно учитывающих фактор времени в определенных границах его изменения), является достаточной для практического применения статических моделей.

В наш динамичный век значительно увеличился поток разнообразной информации, получаемой человеком. Соот­ветственно усложняются и интенсифицируются процессы восприятия этой информации. И в сфере образования про­цесс обучения неизбежно должен стать более наглядным и динамичным. Одними из самых эффективных способов обучения являются методы моделирования (реального, математического, наглядного, символического, мыслен­ного). Моделирование исключает формальную передачу знаний - изучение объекта или явления происходит в ходе интенсивной практической и умственной деятельно­сти, развивая мышление и творческие способности чело­века любого возраста.

Скачать:


Предварительный просмотр:

МЕТОД МОДЕЛИРОВАНИЯ

В наш динамичный век значительно увеличился поток разнообразной информации, получаемой человеком. Соответственно усложняются и интенсифицируются процессы восприятия этой информации. И в сфере образования процесс обучения неизбежно должен стать более наглядным и динамичным. Одними из самых эффективных способов обучения являются методы моделирования (реального, математического, наглядного, символического, мысленного). Моделирование исключает формальную передачу знаний - изучение объекта или явления происходит в ходе интенсивной практической и умственной деятельности, развивая мышление и творческие способности человека любого возраста. Понятие «модель» используется во многих областях науки и имеет разные смысловые значения. Модель - это образ какого-либо объекта, созданный в виде схемы, физических конструкций, знаковых форм или формы, отображающей структуру, свойства, взаимосвязи и отношения между элементами этого объекта. Принято условно подразделять модели на три вида:

  • физические (имеющие природу, сходную с оригиналом модели);
  • вещественно-математические (их физическая природа отличается от прототипа, но возможно математическое описание поведения оригинала);

Логико-семиотические (конструируются из специальных знаков, символов и структурных схем).

Существует и более простая классификация, когда модели делятся на материальные и идеальные (мысленные). Моделирование есть метод исследования объектов познания на их моделях; построение и изучение моделей реально существующих предметов и явлений (органических и неорганических систем, инженерных устройств, разнообразных процессов -физических, химических, биологических, социальных) и конструируемых объектов для определения либо улучшения их характеристик, рационализации способов их построения, управления и т. п.

Понятие моделирования в ДОУ

Метод моделирования в педагогике наиболее активно стали применять начиная со второй половины прошлого века (для этого периода характерен серьезный анализ моделирования как гносеологической проблемы). Моделирование используется как: способ описания педагогического явления; средство научного исследования: предмет исследования; средство деятельности и т. д.

В дошкольной педагогике модель является в первую очередь инструментом познания. Когда дети строят различные модели изучаемых явлений, моделирование выступает в роли средства и способа обобщения учебного материала. Выделяют модель обучения, которая определяется как педагогическая техника, система методов и организационных форм обучения, составляющих дидактическую основу модели.

Модель образования - это сформированные посредством знаковых систем мыслительные аналоги (логические конструкты), схематично отображающие образовательную практику в целом или отдельные ее фрагменты. Модели образования подразделяются на три вида:

  • описательные, дающие представление о сути, структуре, основных элементах образовательной практики;
  • функциональные, отображающие образование в системе его связей с социальной средой;
  • прогностические, дающие теоретически аргументированную картину будущего состояния образовательной практики.

Термин «образовательная модель» применяется для такого круга вопросов, как построение учебных планов и программ, управление образованием, подбор критериев эффективности образовательной технологии, видов и способов контроля и т. д.

Сущность метода моделирования в педагогике заключается в изучении перспективы развития объектов панной науки с помощью модели-образца и в переносе полученных результатов на сам объект. Метод моделирования реализуется посредством множества приемов, соответствующих этапу моделирования. К таким приемам относятся:

а) морфологический анализ - упорядоченное, последовательное и детальное изучение всех возможных вариантов решения задачи. Применяется разновидность такого анализа - «дерево целей»;

б) программирование - анализ определенной логической последовательности смены стадий развития прогнозируемого объекта и выбор наиболее оптимальных вариантов пути от цели к результату;

в) составление прогнозного сценария -- установление логической

последовательности вероятностных событий и их последствий.

В педагогическом прогнозировании используются также методы экстраполяции и экспертных оценок. Моделирование, экстраполяция и экспертное оценивание обеспечивают необходимую комплексность схеме прогнозирования.

Особое значение имеет верификация модели - специалъная исследовательская процедура для выявления степени достоверности результатов прогнозирования. Под достоверностью при этом понимается вероятности осуществления прогноза в заданном временном вале. Объектами верификации выступают все компоненты прогностического процесса: источники информации основания прогнозирования, методы и способы прогнозирования, содержание прогноза как результат.

Наглядное моделирование

Метод наглядного моделирования (макетирования) развивает пространственное воображение, позволяет воспринимать сложную информацию и зрительно представить абстрактные понятия. Наглядное моделирование - воспроизведение существенных свойств изучаемого объекта, создание его заместителя и работа ним. Одним из примеров использования метода является, например, коррекция связной монологической речи дошкольников, особенно с ОНР. При этом в процессе обучения вводятся; система подготовительных упражнений, направленных на осознанное усвоение правил организации композиции высказывания; специальные приемы обучения детей действиям замещения; различные модели, схемы, передающие предметно- смысловую и логическую организацию текста; упражнения по нахождению различных вариативных средств связи предложений, что позволяет решить задачи с усвоением правил смысловой и лексико-синтаксической организации текстовых сообщений. В процессе использования метода наглядного моделирования в коррекции речи детей с ОНР вводится понятие о графическом способе изображения действия различных рассказов. В качестве условных заместителей (элементов модели) выступают си волы разнообразного характера:

Геометрические фигуры;

  • символические изображения предметов (условные обозначения силуэты, контуры, пиктограммы);
  • контрастная рамка - прием фрагментарного рассказывания и многие другие.

В качестве символов-заместителей на начальном этапе работы используются геометрические фигуры, своей формой и цветом напоминающие замещаемый предмет. Например, оранжевый треугольник - морковка, коричневый овал - собака и т. п. На последующих этапах дети выбирают заместители без учета внешних признаков объекта. В этом случае они ориентируются на качественные характеристики объекта (добрый, печальный, теплый, влажный и т. п.).

В качестве символов-заместителей при моделировании творческих рассказов используются:

  • предметные изображения, картинки;
  • силуэтные изображения;
  • геометрические фигуры.

Таким образом, модель, состоящая из различных фигур или предметов, становится планом связного высказывания ребенка с ОНР и обеспечивает последовательность его рассказа.